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Abstract. This paper explores the use of self-supervised deep learning
in medical imaging in cases where two scan modalities are available for
the same subject. Specifically, we use a large publicly-available dataset
of over 20,000 subjects from the UK Biobank with both whole body
Dixon technique magnetic resonance (MR) scans and also dual-energy
x-ray absorptiometry (DXA) scans. We make three contributions: (i) We
introduce a multi-modal image-matching contrastive framework, that is
able to learn to match different-modality scans of the same subject with
high accuracy. (ii) Without any adaption, we show that the correspon-
dences learnt during this contrastive training step can be used to perform
automatic cross-modal scan registration in a completely unsupervised
manner. (iii) Finally, we use these registrations to transfer segmentation
maps from the DXA scans to the MR scans where they are used to train
a network to segment anatomical regions without requiring ground-truth
MR examples. To aid further research, our code will be made publicly
availabld]

1 Introduction

A common difficulty in using deep learning for medical tasks is acquiring high-
quality annotated datasets. There are several reasons for this: (1) using patient
data requires ethical clearance, anonymisation and careful curation; (2) gener-
ating ground-truth labels may require expertise from clinicians whose time is
limited and expensive; (3) clinical datasets are typically highly class-imbalanced
with vastly more negative than positive examples. Thus acquiring sufficiently
large datasets is often expensive, time-consuming, and frequently infeasible.

As such, there is great interest in developing machine learning methods to
use medical data and annotations efficiently. Examples of successful previous
approaches include aggressive data augmentation and generating synthetic
images for training . Alternatively, one can use self-supervised pre-training
to learn useful representations of data, reducing annotation requirements for
downstream learning tasks. This method has already shown much success in

T https://github.com/rwindsorl/biobank-self-supervised-alignment
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other areas of machine learning such as natural image classification [8,|14}/16]
and natural language processing [6},9,25L28].

In this paper, we develop a self-supervised learning approach for cases where
pairs of different-modality images corresponding to the same subject are avail-
able. We introduce a novel pre-training task, where a model must to match to-
gether different-modality scans showing the same subject by comparing them in
a joint, modality-invariant embedding space. If these modalities are substantially
different in appearance, the network must learn semantic data representations
to solve this problem.

In itself, this is an important task. Embeddings obtained from the trained
networks allow us to check if two different scans show the same subject in large
anonymised datasets (by verifying that their embeddings match). It also defines
a notion of similarity between scans that has applications in population studies.
However, the main reward of our method are the semantic spatial representa-
tions of the data learnt during training which can be leveraged for a range of
downstream tasks. In this paper we demonstrate the embeddings can be used for
unsupervised rigid multi-modal scan registration, and cross-modal segmentation
with opposite-modality annotations.

The layout of this paper is as follows: Section [2] describes the cross-modal
matching task in detail, including the network architecture, loss function, and
implementation details, as well as experimental results from a large, publically-
available whole body scan dataset. Section [3]introduces algorithms using the em-
beddings learnt in Section [2] for fast unsupervised multi-modal scan registration
which are shown to succeed in cases where conventional registration approaches
fail. In Section[3.1] we then use these registrations to transfer segmentation maps
between modalites, showing that by using the proposed cross-modal registration
technique, anatomical annotations in DXAs can be used to train a segmentation
network in MR scans.

1.1 Related Work

Self-supervised representation-learning is an incredibly active area of research
at the moment. The current dominant praxis is to train models to perform
challenging self-supervised learning tasks on a large dataset, and then fine-tune
learnt representations for specific ‘downstream’ tasks using smaller, annotated
datasets. Major successes have been reported in image classification [4,7}8l1116],
video understanding [13l27] and NLP [17})25/128], with self-supervised approaches
often matching or exceeding the performance of fully-supervised approaches.

Due to the existence of a few large, publically available datasets (such as
[20]), yet lack of large annotated datasets suitable for most medical tasks, self-
supervised learning shows great promise in the medical domain. For example,
previous work has shown it can be used to improve automated diagnosis of in-
tervertebral disc degeneration [19] and common segmentation tasks [33]. In [32],
it also is shown that using multiple MR sequences in self-supervised learning
improves performance in brain tumour segmentation.
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Data with multiple modalities is a natural candidate for self-supervised ap-
proaches, as one can use information from one modality to predict information
in the other. For example, previous work has shown self-supervised methods can
benefit from fusion of the audio and visual streams available in natural video
data [1,|2,[3L[21,/26]. In this paper we build on this multi-modal approach by
extending it to explicit spatial registration across the modalities.

1.2 Dataset Information, Acquisition and Preparation

For the experiments in this paper we use data from the UK Biobank [31], a large
corpus of open-access medical data taken from over 500,000 volunteer partic-
ipants. A wide variety of data is available, including data related to imaging,
genetics and health-related outcomes. In this study we focus on two whole body
imaging modalities collected by the Biobank: (1) 1.5T, 6-minute dual-echo Dixon
protocol magnetic resonance (MR) scans showing the regions from approximately
the neck to the knees of the participant with variation due to the subject’s height
and position in the scanner; (2) Dual energy x-ray absorptiometry (DXA) scans
showing the entire body. In total, at the time of data collection, the Biobank
consisted of 41,211 DXA scans and 44,830 MR scans from unique participants.
Our collected dataset consists of pairs of same-subject multi-sequence MR
and DXA scans, examples of which can be seen in Figure [I] In total we find
20,360 such pairs. These are separated into training, validation and test sets
with a 80/10/10% split (16,213, 2,027 and 2,028 scan pairs respectively). Scan
pairs are constructed using (1) the fat-only and water-only sequences of the
Dixon MR scans, and (2) the tissue and bone images from the DXA scans. For
the purposes of this study, we synthesize 2D coronal images from the 3D MR
scans by finding the mid-spinal coronal slice at each axial scan line using the
method described in [36]. All scans are resampled to be isotropic and cropped
to a consistent size for ease of batch processing (501 x 224 for MR scans and
800 x 300 for DXA scans). These dimensions maintain an equal pixel spacing of
2.2mm in both modalities. The scans are geometrically related in that the MRI
field of view (FoV) is a cropped, translated and slightly rotated transformation
of the DXA scan’s FoV. Both scans are acquired with the subjects in a supine
position, and there can be some arm and leg movements between the scans.

2 Matching Scans Across Modalities

This section describes the framework used to match same-subject scans across
the DXA and MRI modalities. As shown in Figure [} this is hard to perform
manually with only a few scans. Differences in tissue types visible in DXA and
MRI mean many salient points in one modality are not visible at all in the other.
Furthermore, the corresponding scans are not aligned, with variation in subject
position, pose and rotation.

To tackle this problem, we use the dual encoder framework shown in Figure
tasking it to determine the best alignment between the two scans such that sim-
ilarity is higher for aligned same-subject scans than for aligned different-subject
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Fig. 1: Guess Who? Example scan pairs from our dataset. The top row shows
bone (left) and tissue (right) DXA scans from the dataset. The bottom row
shows synthesized mid-coronal fat-only (left) and water-only (right) Dixon MR
slices. In this paper, semantic spatial representations of the scans are learnt by
matching corresponding DXA and MR scan pairs. Can you match these pairs?ﬂ

scans. Since both the DXA and MRI scans are coronal views and subject rota-
tions relative to the scanner are very small, an approximate alignment requires
determining a 2D translation between the scans. The similarity is then deter-
mined by a scalar product of the scans’ spatial feature maps after alignment.
In practice, this amounts to 2D convolution of the MRI’s spatial feature map
over the DXA’s spatial feature map, and the maximum value of the resulting
correlation map provides a similarity score.

The network is trained end-to-end by Noise Contrastive Estimation [12] over
a batch of IV randomly sampled matching pairs. If M;; represents the similarity
between the i*" DXA and j** MRI, where i = j is a matching pair and i # j is
non-matching, and 7 is some temperature parameter, the total loss for the k-th
matching pair, £, is given by

og (1)

oo 1oy exPOMix/T) L exp(Mia/7) )
' (gzj}v_lexp<va/T>+ > exp(Mix/7)

2.1 Experiments

This section evaluates the performance of the proposed configuration on the
cross-modal scan-matching task. To determine the relative importance of each
MRI sequence and each DXA type, we train networks varying input channels to
each modality’s encoder (see Figure [3| for the configurations used). To demon-
strate the value of comparing spatial feature maps of scans instead of a single
global embedding vector, we compare to a baseline network that simply pools
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Fig. 2: The dual encoding configuration used for contrastive training. Two CNNs
ingest scans of the respective modalities, outputting coarse spatial feature maps
(A). The feature maps of each DXA-MRI pair are normalised and correlated to
find the best registration (B). Using this registration, the maximum correlation
is recorded as the similarity between the two scans (C). The architecture used
for both spatial encoders is shown in the appendix.

the spatial feature maps into a scan-level descriptor, and is trained by the same
contrastive method. Details of this baseline are given in the appendix.

Implementation. Networks are trained with a batch size of 10 using an Adam
optimizer with a learning rate of 107° and 8 = (0.9,0.999). A cross-entropy
temperature of T = 0.01 is used (a study of the effect of varying this is given
in the appendix). Spatial embeddings are 128-dimensional. Training augmenta-
tion randomly translates the both scans by +5 pixels in both axis and alters
brightness and contrast by +20%. Each model takes 3 days to train on a 24GB
NVIDIA Tesla P40 GPU. Networks are implemented in PyTorch v.1.7.0.

Evaluation measures. We evaluate the quality of the learnt embeddings on
the test set by assessing the ability of the system to: (1) retrieve the matching
opposite modality scan for a given query scan based on similarity; (2) verify if a
given scan pair is matching or not. In the latter case, positive matches to a scan
are defined as those with similarities above a threshold, ¢, and negative matches
have similarity < ¢. Considering all possible DXA-MRI scan pairs (matching &
non-matching), we can then generate an ROC curve by varying ¢ from -1 to 1.
For the retrieval task, we report top-1 and top-10 recall based on similarity across
all test set subjects, and the mean rank of matching pairs. For the verification
task, we report the ROC area-under-curve (AUC) and the equal error rate (EER)
(i.e. when TPR = FPR).

Results. Figure [3| shows the ROC curve and performance measures for varying

input channels. All configurations vastly exceed the baseline’s performance, indi-
cating the benefit of spatial scan embeddings as opposed to scan-level descriptor
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100 Contrastive 20, Zoomed Inout Verification Retrieval
P Auc EER % Recall  Mean
DXA MRI (%) @1 @10 Rank

Baseline  0.9952 2.57 26.3 78.7 9.246
B F 09992 0.77 89.4 994 2.106
B F,W 0.9993 0.84 87.7 99.4 2.079
e DXA 2R T F,W 09986 1.14 83.1 984 3.013
¢ "”j}A B,T F 09989 0.98 858 98.7 2.569
g B,T W 0.9993 0.70 90.1 99.4 1.920

Tow oo om o A B,T F,W 0.9992 0.60 90.7 99.5 2.526
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(a) ROC Curve (b) Retrieval and Verification Performance

Fig. 3: Verification and retrieval performance on the 2,028 scan test dataset with
varying inputs of bone DXA (B), tissue DXA (T), fat-only MR (F), and water-
only MR (W). shows an ROC curve for the verification task. Table ([b))
reports performance statistics for the models, including equal error rate (EER),
area under curve (AUC), recall at ranks 1 & 10 and the mean rank of matches.

vectors. The full model achieves a top-1 recall of over 90% from 2028 test cases.
The tissue DXA-only model performs worst of all configurations suggesting bone
DXAs are much more informative here. Extended results and recall at K curves
are given in the appendix.

Discussion. The strong performance of the proposed method on the retrieval
task by matching spatial (as opposed to global) features is significant; it sug-
gests the encoders learn useful semantic information about specific regions of
both scans. This has several possible applications. For example, one could select
a query ROI in a scan, perhaps containing unusual pathology, calculate its spa-
tial embeddings and find similar examples across a large dataset (see [30] for a
more detailed discussion of this application). More conventionally, the learnt fea-
tures could be also used for network initialization in downstream tasks on other
smaller datasets of the same modality, potentially increasing performance and
data efficiency. As a demonstration of the usefulness of the learnt features, the
next section of this paper explores using them to register scans in a completely
unsupervised manner.

3 Unsupervised Registration Of Multi-Modal Scans

A major advantage of this contrastive training method is that dense correspon-
dences between multi-modal scans are learnt in a completely self-supervised
manner. This is non-trivial; different tissues are shown in each modality, mak-
ing intensity-based approaches for same- or similar-modality registration [23}/35]
ineffective. Here we explore this idea further, developing three methods for es-
timating rigid registrations between the modalities. Each method is assessed by
measuring L2-distance error when transforming anatomical keypoints from the
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Fig. 4: Salient point correspondences between scan pairs found by Lowe’s ratio
test & RANSAC. The fat-only channel of MRI source image is shown on the
left, with the target DXA bone scan shown on the right

MRIs to the DXA scans. For each proposed registration method the aim is to
estimate the three transformation parameters; a 2D translation and a rotation.

1. Dense Correspondences: During training, the contrastive framework at-
tempts to align dense spatial feature maps before comparing them. We can use
this to determine the registration translation by convolving the feature maps
together and measuring the point of maximum response as the displacement be-
tween the images (as in Figure 2| stages A, B). The rotation between the scans
is found by rotating the MRI scan across a small range of angles, convolving the
feature maps, and recording the angle which induces the greatest alignment.

2. Salient Point Matching: The dense correspondence method is slow, es-
pecially on a CPU, as it requires multiple convolution operations with large
kernels. To speed up registration we need use only a few salient points between
the feature maps. These can be found by matching pairs of points based on
correlations and then employing Lowe’s second nearest neighbour ratio test [22]
to remove ambiguous correspondences, followed by RANSAC estimation of the
transformation. Details of this algorithm are given in the appendix. Example
correspondences found by this method are shown in Figure

3. Refinement Regressor: The previous approaches generate robust approx-
imate registrations between the two images but are limited by the resolution of
the feature maps they compare (8 xdownsample of a 2.2mm pixel spacing original
image). To rectify this issue we use a small regression network to refine predic-
tions by taking the almost-aligned feature maps predicted by the aforementioned
methods and then outputting a small refinement transformation. High-precision
training data for this task can be generated ‘for free’ by taking aligned scan pairs
from the salient point matching method, slightly misaligning them with a ran-
domly sampled rotation and translation and then training a network to regress
this random transformation. The regression network is trained on 50 aligned
pairs predicted by the previous salient point matching method and manually
checked for accuracy. For each pair, several copies are generated with slight ran-
domly sampled translations and rotations at the original pixel resolution. For
each transformed pair, the DXA and MRI spatial feature maps are then concate-
nated together, and used as input to a small CNN followed by a fully-connected
network that estimates the three parameters of the transformation for each pair.
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a) DXA + Keypoints  b) MRI + Keypoints ) No Transform d) Mutual Information ~ e) Dense Correspondences ) Salient Point Matching g)}fs;;::::\r:::m;::w
Fig. 5: Example results from each registration method. (a) & (b) show keypoints
for the MRI and the DXA. The MRI & keypoints are registered to the DXA by:
(¢) no transform; (d) mutual information maximisation; (e) Dense correspon-
dences as in pre-training; (f) Salient point matching via Lowe’s ratio test; (g)
Applying the refinement regressor to (f).

Experiments. To measure the quality of these registrations, 5 keypoints were
marked in 100 test scan pairs: the femoral head in both legs (hip joints), humerus
head in both arms (shoulder joints) and the S1 vertebra (base of the spine). MRI
keypoints are annotated in 3D and then projected into 2D. These keypoints pro-
vide the ground truth for assessing the predicted transformations. Example an-
notations are shown in Figure[5] We then measure the mean L2-localisation error
when transferring the keypoints between modalities using rigid body transforms
predicted by the proposed methods. We compare to baselines of (i) no transfor-
mation (i.e. the identity); and (ii) rigid mutual information maximisatiorﬂ To
measure annotation consistency and error induced by change in subject pose, we
also report the error of the ‘best-possible’ rigid transformation keypoints - that
which minimises the mean L2 transfer error.

Results. Table [I] shows the localisation error achieved by each method. All
methods yield accurate registrations between the images. The best method is
found to salient point matching followed by the refinement network, which is also
shown to be fast on both a GPU and CPU. We attempted to calculate SIFT and
MIND features in both modalities and match them as proposed in [34] and [15]
repectively however these approaches did not work in this case (see appendix).
Discussion. In this setting, our methods were found to outperform other ap-
proaches for multi-modal registration (mutual information, MIND and SIFT).
We believe the reason for this is that DXA scans show mostly bony structures,
whereas most visual content in MRI is due to soft tissues which can’t be differen-
tiated by DXA. As such, most pixels have no obvious intensity relation between
scans. However, accurate registration between the scans is important as it allows
collation of spatial information from both modalities. This can be exploited in at
least two ways: (i) for joint features; registration allows shallow fusion of spatial
features from both modalities. This could be useful in, for example, body com-
position analysis, conventionally done by DXA but which may benefit from the
superior soft tissue contrast of MRI [5]. (ii) for cross-modal supervision; registra-

? Using MATLAB’s imregister with MattesMutualInformation [24] as an objective.
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tion allows prediction of dense labels from one modality which can then be used
as a training target for the other. For example one could diagnose osteoporosis/
fracture risk at a given vertebral level from MR using labels extracted from DXA
by conventional methods.

Method Keypoint Transfer Error (cm) Time(s)
HJ S1 SJ Median(all) Mean(all) GPU CPU
No Trans. 22.1+£5.0 21.7£5.3 22.3+5.0 21.9 22.01+5.1 0 0
Mut. Inf. 2.23£1.3 2.67+£1.4 2.75+2.2 2.21 2.52+1.7 - 1.0
Dense Corr. 1.48+0.8 1.52+0.8 2.05+1.2 1.52 1.72£1.0 1.5 5.7
Sal. Pt. Mt. 1.34£0.9 1.37+1.0 2.04+1.4 1.46 1.63+1.3 04 1.1
Regressor 1.24+0.8 1.30+0.9 1.4440.9 1.12 1.32+0.9 0.9 1.5
Best Poss.  0.84+£0.4 0.84+0.5 0.87+0.4 0.84 0.87£0.4 - -

Table 1: Keypoint transfer error for the proposed methods. We report the mean
and median error for all keypoints combined and for the hip joints (HJ), shoulder
joints (SJ) and S1 individually. Runtime on a GPU & CPU is also shown.

3.1 Cross-Modal Annotation Transfer

A benefit of the demonstrated cross-modal registrations is that they allow the
transfer of segmentations between significantly different modalities, meaning seg-
mentation networks can be trained in both modalities from a single annotation
set. This is useful in cases when a tissue is clearly visible in one modality but not
the other. For example, here the pelvis is clearly visible in the DXA scan but not
in the MRI slice. As an example of using cross-modal annotation transfer, the
spine, pelvis and pelvic cavity are segmentated in DXA scans using the method
from [18]. These segmentations are then transferred to the MRI scans by the
refinement network from section [3| where they act as pixel-wise annotations to
train a 2D U-Net [29] segmentation network. Compared to manual segmentation
of the spine performed in 50 3D MR scans and projected into 2D, this network
achieves good performance, with a mean Dice score of 0.927 showing the quality
of the transferred annotations. Examples are shown in the appendix.

4 Conclusion

This paper explores a new self-supervised task of matching different-modality,
same-subject whole-body scans. Our method to achieves this by jointly aligning
and comparing scan spatial embeddings via noise contrastive estimation. On a
test dataset of 2028 scan pairs our method is shown to perform exceptionally
well with over 90% top-1 recall. We then show the learnt spatial embeddings
can be used for unsupervised multi-modal registration in cases where standard
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approaches fail. These registrations can then be used to perform cross-modal
annotation transfer, using DXA segmentations to train a MRI-specific model to
segment anatomical structures. Future work will explore using the learnt spatial
embeddings for other downstream tasks and extend this method to 3D scans.
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as part of the EPSRC CDT in Autonomous Intelligent Machines and Systems
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5 Appendix

5.1 Scan Matching - Architecture, Extended Tables & Figures

Projection Head For
Baseline Model Only

64x800x300
64x400x150
128x400x150
128x400x150
128x200x75
256x200x75
256x200x75
256x100x37
256x100x37
conv2d (128,3x3,0, 1)
128x100x37

conv2d (64, 3x3,0,1)
conv2d (64, 3x3,0,1)
MaxPool2d (2x2, 0, 0)
conv2d (128, 3x3,0,1)
conv2d (128,3x3,0, 1)
MaxPool2d (2x2, 0, 0)
conv2d (256, 3x3,0, 1)
conv2d (256, 3x3,0, 1)
MaxPool2d (2x2, 0, 0)
conv2d (256, 3x3,0, 1)
GlobalMaxPool2d

convs1 convs2 convs3 convs4

Fig. 6: The simple spatial encoder used in the contrastive framework. Both the
MR and DXA spatial encoders use this architecture. For the baseline model, the
output spatial features are max pooled and the projection head shown on the
right is appended. Each convolutional & linear layer except the final one uses
ReLU activations, followed by BatchNorm.
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Fig. 7: ROC and Recall at K (RQK) curves for varying scan-input and temper-
ature parameter 7.
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Input Scans % Recall AUC Mean Equal TPRQ
Top-1 Top-5 Top-10 Rank Error Rate FPR=1%
Bone DXA + Fat MRI 89.41 99.11 99.41 0.9992 2.106 0.0077 0.9955
Bone DXA + 2 MRI 87.72 98.66 99.36 0.9993 2.079 0.0084 0.9935
Tissue DXA + 2 MRI 83.12 97.03 9842 0.9986 3.013 0.0114 0.9891
2 DXA + Fat MRI 85.84 97.57 98.66 0.9989 2.569 0.0098 0.9925
2 DXA + Water MRI  90.05 99.21 99.41 0.9993 1.920 0.0070 0.9960
2 DXA + 2 MRI 90.69 99.21 99.46 0.9992 2.526 0.0060 0.9960

Table 2: An extended table

(TPRQFPR=1%) and top-5 recall.

of performance metrics for varying scan-input in
contrastive training including true positive rate at a false positive rate of 1%

Temperature, 7 % Recall AUC Mean Equal TPR@
’ Top-1 Top-5 Top-10 Rank Error Rate FPR=1%
7=0.1 89.46  98.86 99.41 0.9991  2.148 0.0095 0.9921
7=0.05 91.14 99.16 99.45 0.9991 2.140 0.0080 0.9946
7=0.01 90.07 99.21 99.45 0.9992  2.527 0.0060 0.9960
7=0.005 91.18 99.50 99.60 0.9994 2214 0.0049 0.9975
7=0.001 74.41  92.97 96.28 0.9979 3.534 0.0197 0.9629

Table 3: Scan-matching performance metrics for configurations with varying soft-

max temperature, 7.

5.2 Unsupervised Registration

Lowe’s Nearest Neighbours Ratio Test

1. For pixel in source feature map s1, find the top-two most correlating pixels
in the target feature map, t; and t, respectively.

2. If 7-sim(sy,t1) < sim(s1,t2) save the pair (s1,?1), where 7 is some threshold
between 0 and 1 and sim is the cosine similarity.

3. Repeat this for each pixel in the source feature map to obtain a set of can-
didate matches between the feature maps.

4. Apply RANSAC to remove spurious correlations from these candidates

5. Use LMEDS to get the best rigid transform between remaining inlying

points.
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;mmy MR to DXATissue anemn\y MRI to DXATissue. DXA Bone to DXATissue
(b) Non-rigid MIND

(a) SIFT Correspondences Registration

Fig.8: Attempted registration using SIFT & MIND features for the
varying modalities. a) SIFT features (shown by red circles) were calculated
in both the original image and a negative version. They are then matched
across modalities by brute-force matching and RANSAC is applied to find the
best affine transform between the images. The in-lying matches are shown in
green. This approach only succeeds finding correspondances between the already
aligned MR sequences and to, some extent, the DXA images. b) Results from
Gauss-Newton optimised non-rigid MIND registration results as implemented at
https://github.com/cmirfin/BBR.

DXA Transferred Segmentation U-Net Prediction

Fig.9: Predicted segmentations of the spine, pelvis and pelvic cavity
in MR scans by a U-Net trained with DXA annotations. Structures
are segmented in DXA scans and transferred to the corresponding MR scan
by the refinement registration method. A model is trained on the transferred
segmentations which can then be applied to unpaired MR scans.
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