Skip to main content

FedPerl: Semi-supervised Peer Learning for Skin Lesion Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12903))

Abstract

Skin cancer is one of the most deadly cancers worldwide. Yet, it can be reduced by early detection. Recent deep-learning methods have shown a dermatologist-level performance in skin cancer classification. Yet, this success demands a large amount of centralized data, which is oftentimes not available. Federated learning has been recently introduced to train machine learning models in a privacy-preserved distributed fashion demanding annotated data at the clients, which is usually expensive and not available, especially in the medical field. To this end, we propose \(\texttt {FedPerl}\), a semi-supervised federated learning method that utilizes peer learning from social sciences and ensemble averaging from committee machines to build communities and encourage its members to learn from each other such that they produce more accurate pseudo labels. We also propose the peer anonymization (PA) technique as a core component of \(\texttt {FedPerl}\). PA preserves privacy and reduces the communication cost while maintaining the performance without additional complexity. We validated our method on 38,000 skin lesion images collected from 4 publicly available datasets. \(\texttt {FedPerl}\) achieves superior performance over the baselines and state-of-the-art \(\texttt {SSFL}\) by 15.8%, and 1.8% respectively. Further, \(\texttt {FedPerl}\) shows less sensitivity to noisy clients (https://github.com/tbdair/FedPerlV1.0).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Albarqouni, S., Bakas, S., Kamnitsas, K., et al.: Domain adaptation and representation transfer, and distributed and collaborative learning (2020)

    Google Scholar 

  3. Binder, M., Kittler, H., Seeber, A., Steiner, A., Pehamberger, H., Wolff, K.: Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network. Melanoma Res. 8(3), 261–266 (1998)

    Article  Google Scholar 

  4. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  5. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  6. Flores, M., et al.: Federated learning used for predicting outcomes in SARS-COV-2 patients (2021)

    Google Scholar 

  7. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333 (2015)

    Google Scholar 

  8. Gessert, N., Nielsen, M., Shaikh, M., Werner, R., Schlaefer, A.: Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data. MethodsX 7, 100864 (2020)

    Article  Google Scholar 

  9. Jeong, W., Yoon, J., Yang, E., Hwang, S.J.: Federated semi-supervised learning with inter-client consistency & disjoint learning (2021). https://openreview.net/forum?id=ce6CFXBh30h

  10. Kawahara, J., Daneshvar, S., Argenziano, G., Hamarneh, G.: Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J. Biomed. Health Inform. 23(2), 538–546 (2019)

    Article  Google Scholar 

  11. Li, D., Kar, A., Ravikumar, N., Frangi, A.F., Fidler, S.: Federated simulation for medical imaging. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 159–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_16

    Chapter  Google Scholar 

  12. Lopez, A.R., Giro-i Nieto, X., Burdick, J., Marques, O.: Skin lesion classification from dermoscopic images using deep learning techniques. In: 2017 13th IASTED international conference on biomedical engineering (BioMed), pp. 49–54. IEEE (2017)

    Google Scholar 

  13. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  14. Orekondy, T., Oh, S.J., Zhang, Y., Schiele, B., Fritz, M.: Gradient-leaks: understanding and controlling deanonymization in federated learning. arXiv preprint arXiv:1805.05838 (2018)

  15. Pacheco, A.G., et al.: PAD-UFES-20: a skin lesion benchmark composed of patient data and clinical images collected from smartphones. arXiv preprint arXiv:2007.00478 (2020)

  16. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)

    Article  Google Scholar 

  17. Rogers, H.W., et al.: Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch. Dermatol. 146(3), 283–287 (2010)

    Article  Google Scholar 

  18. Roth, H.R., et al.: Federated learning for breast density classification: a real-world implementation. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 181–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_18

    Chapter  Google Scholar 

  19. Sarma, K.V., et al.: Federated learning improves site performance in multicenter deep learning without data sharing. J. Am. Med. Inform. Assoc. 28, 1259–1264 (2021)

    Article  Google Scholar 

  20. Siegel, R.L.: Cancer statistics, 2021. Published early online January 12, 2021 in CA cancer journal for clinicians. MPH, American Cancer Society, Atlanta (2021)

    Google Scholar 

  21. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

  22. Topping, K.J.: Trends in peer learning. Educ. Psychol. 25(6), 631–645 (2005)

    Article  Google Scholar 

  23. Tresp, V.: Committee machines. In: Handbook for Neural Network Signal Processing, pp. 1–18 (2001)

    Google Scholar 

  24. Tschandl, P.: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 20(7), 938–947 (2019)

    Article  Google Scholar 

  25. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  26. Yang, D., et al.: Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan. Med. Image Anal. 70, 101992 (2021)

    Google Scholar 

  27. Yeganeh, Y., Farshad, A., Navab, N., Albarqouni, S.: Inverse distance aggregation for federated learning with Non-IID data. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 150–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_15

    Chapter  Google Scholar 

  28. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Attention residual learning for skin lesion classification. IEEE Trans. Med. Imaging 38(9), 2092–2103 (2019)

    Article  Google Scholar 

  29. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

Download references

Acknowledgement

T.B. is financially supported by the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Bdair .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 287 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bdair, T., Navab, N., Albarqouni, S. (2021). FedPerl: Semi-supervised Peer Learning for Skin Lesion Classification. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics