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Abstract. Building robust deep learning-based models requires diverse train-
ing data, ideally from several sources. However, these datasets cannot be
combined easily because of patient privacy concerns or regulatory hurdles,
especially if medical data is involved. Federated learning (FL) is a way to
train machine learning models without the need for centralized datasets. Each
FL client trains on their local data while only sharing model parameters
with a global server that aggregates the parameters from all clients. At the
same time, each client’s data can exhibit differences and inconsistencies due
to the local variation in the patient population, imaging equipment, and
acquisition protocols. Hence, the federated learned models should be able to
adapt to the local particularities of a client’s data. In this work, we combine
FL with an AutoML technique based on local neural architecture search
by training a “supernet”. Furthermore, we propose an adaptation scheme
to allow for personalized model architectures at each FL client’s site. The
proposed method is evaluated on four different datasets from 3D prostate
MRI and shown to improve the local models’ performance after adaptation
through selecting an optimal path through the AutoML supernet.
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1 Introduction

The advancements of the last few years in medical image segmentation were dominated
by deep learning (DL) approaches. DL mostly eliminated the need for handcrafting
image features. However, it has been arguably replaced by the need of domain experts
to design application-specific DL models. In particular, the medical image computing
field has been dominated by popular hand-engineered network architectures such as
2D and 3D U-Net [21,2], V-Net [20], High-Res-Net [14], DeepMedic [12], and many
others. To get a good network design for a particular problem, one promising direction
is to automate the time-consuming model designing process via AutoML techniques.
As another major challenge in model development, large amounts of data covering
sufficient large range of examples are usually required to train accurate and robust
models. To achieve this goal, hospitals and medical institutes often need to collaborate
and host centralized databases for the development of clinical-grade DL models. This
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can become challenging due to data-privacy and various ethical concerns associated
with data sharing in healthcare domain. One approach to combat such issues is
through federated learning (FL), where only model and/or DL workflow parameters
are shared among participating institutes instead of raw medical data. Furthermore,
it is well known that global robustness and local accuracy is in many cases conflicting:
models trained on large centralized datasets might not always generalize well to
the data at a particular imaging site due to various inconsistencies (scanner models,
imaging protocols, patient populations, etc.) among the different sites. In this case,
domain adaptation (DA) is often needed. In this work, we propose to systematically
tackle the three challenges in a unified framework: combining an FL algorithm
with AutoML and the capability of global-local model adaptation. In particular, we
implement a “supernet” training strategy that can be trained in a federated setting.
We believe AutoML and FL technologies are a natural fit for each other because of
their complementary nature. By combining the two, we are also able to address the
DA problem. For one, FL can circumvent the problem of hosting and accessing large
centralized datasets by distributing the learning effort to several clients with their own
local data. FL will only communicate the model gradients after a local round of training
to a centralized server which aggregates the results and starts the next round of FL.
At the same time, AutoML with supernet design allows us to avoid hand-engineering
of dataset-specific network architectures and a particular sub-network of the trained
supernet can be used as a way of local domain adaptation to handle inconsistencies
between the different contributing data sites. Next, we summarize related works.

AutoML: Recently, deep learning is applied for various applications, such as image
recognition, semantic segmentation, object detection, natural image generation, etc..
However, for each specific task, particular network architectures often need to be
hand-designed. Neural architecture search (NAS) [3] is one of the most common
approaches to circumvent such hand-design of architectures in AutoML for DL ap-
plications. The goal of NAS is to automatically design neural network architectures
without any human heuristics or assumptions. In addition to the model weights, after
searching, the model architecture itself is optimized for the task at hand, while often
still being generalizable to other datasets [28]. A common concept in (one-shot) NAS
and AutoML literature is the “supernet” [18,1,27]. The main idea behind supernet
is that we can create a large neural network including several candidate modules
at each level of the networks. This supernet can be trained jointly, and from the
supernet, specific sub-networks can be chosen by selecting a path through the module
candidates. At deployment, the final architecture is selected from the supernet by
assigning path weights to select particular module candidates. Additional budgeting
constraints, such as latency or number of model parameters, can be added to find
optimal architectures for a given application. Recent works can achieve state-of-the-art
results on computer vision tasks while being computationally efficient [25].

Federated Learning: FL enables collaborative and decentralized DL training with-
out sharing raw patient data [19]. Each client in FL trains locally on their own data
and then submits their model parameters to a server that accumulates and aggregates
the model updates from each client. Once a certain number of clients have submitted
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their updates, the aggregated model parameters are redistributed to the clients for
local model update, and a new round of local training starts. While out of the scope
of this work, FL can also be combined with additional privacy-preserving measures to
avoid potential reconstruction of training data through model inversion if the model
parameters would be leaked to an adversary [13]. Several works have shown the
applicability of FL to medical imaging tasks [22,13,26]. Recent work that combines
NAS approaches with FL has been proposed for the mobile phone applications
[31]. As such, its focus is on reducing the computational requirements on the local
edge devices, making its setting quite different from the “cross-silo” FL [10] medical
image segmentation investigated here, where the focus is on model performance and
personalization. The closest work in motivation to ours is [7] which focuses on the
non-I.I.D. setting but is restricted to using toy datasets for classification tasks, like
CIFAR-10, and differs in its implementation details.

Domain Adaptation: Domain adaptation aims to tackle data inconsistencies among
different domains, or between training data and unknown data. In its simplest form,
fine-tuning, also known as transfer learning [23], can help to adapt a pre-trained
model to a particular target domain. More recent approaches for DA typically involve
some form of adversarial learning to introduce a specific loss that can minimize
the feature-level differences among different domains [11] or through gradient back-
propagation using adversarial training [4,5]. An alternative approach is coming from
the “image translation” field where generative adversarial networks (GAN) are utilized
to translate the image of one domain to mimic another domain. An important part
of these approaches is the application of some form of cycle-consistency which is
essential to train on un-paired data [9,32,30] The common concept of adversarial
training suggests that the gradients from external constraints will help balance various
domains and change the model’s feature representations.

Contributions: Our proposed approach here is similar in that we will ultimately
adapt the model’s internal feature representations through the selection of an adapted
sub-network of the trained supernet, but without the need to use computationally ex-
pensive adversarial learning schemes. Our contributions can be summarized as follows:

1. We show that we can successfully train models through federated learning with
comparable or better performance to models trained on centrally hosted data.

2. We extent federated learning by introducing an AutoML approach for supernet
model training.

3. We show that finding an optimal path through the supernet can act as a form of
local domain adaptation and bring performance gains for each individual client.

2 Method

Here we describe the technical details of the FL and AutoML approach utilized in this
work. The proposed method can be separated into two steps: 1) FL with AutoML
supernet training and 2) local model adaptation by finding the best path through the
supernet with respect to the local data. Both FL and AutoML procedures presented
are designed for 3D medical image segmentation tasks.
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Client-Server-Based Federated Learning: In its typical form, FL utilizes a client-
server setup. Each client trains the same model architecture locally on their own data.
Once a certain number of clients finished local training, the updated model weights
(or their gradients) are sent to the server for aggregation. After aggregation, the new
weights on the server are re-distributed to the clients to execute the next round of local
model training. After several FL rounds, the models at each client are converged. Each
client can be allowed to select their local best model by monitoring a certain perfor-
mance metric on a local hold out validation set. In our experiments, we implement the
FederatedAveraging algorithm proposed in [19]. While there exist variants of this
algorithm to address particular learning tasks, in its most general form, FL tries to min-
imize a global loss function L which can be a weighted combination of K local losses
{Lk}Kk=1 that each is computed on a client k’s local data. Hence, FL can be formulated
as the task of finding the model parameters φ that minimize L given some local dataX.

min
φ
L(X;φ) with L(X;φ)=

K∑
k=1

wkLk(Xk;φ), (1)

where wk>0 denote the weight coefficients for each client k, respectively. Note, that
the local data Xi is never shared among the different clients. Only the model weights
are accumulated and aggregated on the server as shown in Algorithm 1.

Algorithm 1 Client-server federated learning with FederatedAveraging [19,13]. T
is the number of federated learning rounds and nk is the number of LocalTraining

iterations minimizing the local loss Lk(Xk;φ(t−1)) for a client k.

1: procedure Federated Learning
2: Initialize weights: φ(0)

3: for t←1···T do
4: for client k←1···K do . Executed in parallel
5: Send φ(t−1) to client k
6: Receive (∆φ

(t)
k ,nk) from client’s LocalTraining(φ(t−1))

7: end for
8: φ

(t)
k ←φ(t−1)+∆φ

(t)
k

9: φ(t)← 1∑
knk

∑
k(nk ·φ(t)

k )

10: end for
11: return φ(t)

12: end procedure

AutoML with Supernet: In order to allow for personalized neural architectures,
we designed a supernet S consisting of various DL module candidatesM suitable
for 3D medical imaging tasks shown in Fig. 1a. Each candidateM is a subgraph
s∈S, denoted as N (s,w) with model weights w. These modules are optimized at
multiple resolution levels to capture different levels of image features useful for the
segmentation task. In general, we follow the popular encoder-decoder structure which
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has been successfully applied to many medical imaging tasks [21,2,20] as shown in
Fig. 1b with skip connections that concatenate features of the encoder with their
corresponding layer in the decoder path. During training, we choose arbitrary paths
m from the module candidatesM following a uniform sampling scheme (see Fig. 1c)
to define a sub-network s sampled from the supernet S as in Eq. 2.

WS =argmax
W

L(N(S,W)) (2)

In this work, we choose the combination of Dice loss [20] and cross entropy loss as our
loss function which is commonly used for segmentation tasks in medical imaging [8].
Dice loss’ major advantage is its ability to work well in segmentation tasks with an
unbalance in the amount of foreground/background regions. Once the supernet is
trained, we can find a sub-network s0 by identifying a locally optimal path through
the supernet, effectively adapting the model to the target domain. During adaptation,
the model parameters φ stay fixed and only the path weights are optimized for one
epoch on the local validation set. This results in an optimal pathm0∈M that defines
our locally adapted sub-network s0∈S as Eq. 3.

s0=argmax
s∈S

Lval(N (s,ws)) (3)

3 Experiments & Results

Our proposed method is evaluated on the task of 3D whole prostate segmentation
in T2-weighted MRI. In particular, MRI has challenges of data inconsistencies due to
variations in different imaging protocols and scanners used at each data contributing
site, potentially causing drastic variations in contrast and intensity values.

Datasets: We utilize prostate MRI datasets from four different publicly available
data sources. MSD-Prostate1 [24], PROMISE12 2 [17], NCI-ISBI133, and ProstateX4

[16]. For each dataset, we perform three random splits into training, validation, and
testing sets at roughly 70%, 10%, and 20% of the total number of cases of each
dataset. The resulting number of cases for each dataset are shown in Table 1. We
average results across the testing splits of each random split. For reference, we show
the results on a centralized dataset where all four datasets have been combined.
We also compare the performance for models trained locally and through federated
learning an each dataset’s testing split. The performance of a standard 3D U-Net [2]
which is a subgraph of our supernet (when all candidates are type 1) is shown for a
baseline comparison. We resample each image to a constant resolution of 0.5 mm ×
0.5 mm × 1.0 mm and normalize all non-zero image intensities by subtracting their
mean and dividing by their standard derivation on a per-image basis.

1 http://medicaldecathlon.com
2 https://promise12.grand-challenge.org
3 http://doi.org/10.7937/K9/TCIA.2015.zF0vlOPv
4 https://prostatex.grand-challenge.org

http://medicaldecathlon.com
https://promise12.grand-challenge.org
http://doi.org/10.7937/K9/TCIA.2015.zF0vlOPv
https://prostatex.grand-challenge.org
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(a)

(b)

(c)

Fig. 1: (a) Searched network module candidates, (b) our supernet architecture S,
and (c) a potential path m selecting several module candidatesM. Note, Identity
is only used if input/output sizes are the same.

Implementation: Both U-Net and the supernet are trained using randomly cropped
patches of size 160×160×32 from the input images and labels. We used a mini-batch
size of 18 by selecting 3 random crops from any 6 random input image and label pairs.
As the optimizer for training the supernet, we chose NovoGrad which has typically
faster convergence speed than the more commonly used Adam optimizer [6]. The learn-
ing rate for supernet training was set to 1e−3. For finding the optimal path for the final
sub-network we use the Adam optimizer with a learning rate of 1e−3. Augmentation
techniques like random intensity shifts, contrast adjustments, and adding Gaussian
noise are applied during training to avoid overfitting to the training set. Our supernet
has 33×46=110,592 possible path combinations. Therefore, it is trained 10× longer
than 3D U-Net to give it the opportunity to train most paths well. Both 3D U-Net
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baseline and the supernet are implemented with PyTorch5 using components from
MONAI6 and NVFlare 7 for FL communication. All models are trained on NVIDIA
V100 GPUs with 16 GB memory. We monitor convergence on randomly chosen paths
sampled from a uniform distribution during each validation to determine when the su-
pernet is sufficiently trained across clients. The number of training iterations is chosen
such that the likelihood of a path being selected during the entire training is at least ¿1.

Results: Table 1 show the performance for assuming local, centrally hosted, and
federated datasets. Table 2 shows the better generalizibilty of supernet models trained
in the FL. We show the performance of the proposed supernet training approach and
its adaption to the local dataset distribution via path optimization, together with
a baseline implementation of 3D U-Net using the same augmentation, optimization
and hyperparameters to be comparable. Visualization of the results before and after
model adaptation are shown in Fig. 2. In descending order, most commonly chosen
operations were 3D conv., 3D residual block, 2D conv., followed by identity.

Table 1: Results for centralized dataset and each dataset trained locally and in feder-
ated learning. We show the performance of a baseline 3D U-Net and our proposed su-
pernet (SN) approach. The average Dice of the local model’s scores is shown (excluding
the scores on centralized data). The highest scores for each dataset are marked in bold.

Cases Central NCI PROMISE12 ProstateX MSD
Training 172 45 35 69 23
Validation 23 6 5 9 3
Testing 48 12 10 20 6
Total 243 63 50 98 32

Avg. Dice [%] Central NCI PROMISE12 ProstateX MSD Avg. (loc.)
U-Net (loc.) 89.72 90.15 83.59 90.73 86.17 87.66
U-Net (fed.) 90.59 85.73 90.35 88.40 88.77
SN (loc.) 90.11 90.42 83.51 90.76 86.76 87.86
SN (fed.) 90.57 85.61 91.07 88.39 88.91
SN (loc.) + adapt. 90.15 90.50 83.46 90.78 87.83 88.14
SN (fed.) + adapt. 90.68 86.15 90.65 88.74 89.06

4 Discussion & Conclusions

It can be observed from Table 1 that the supernet training with local adaptation
in FL (SN (fed.) + adapt.) achieves the highest average Dice score on the local
datasets. At the same time, the adapted models also show the best generalizability
(see Table 2). This illustrates the viability of supernet training with local model
adaption to the client’s data. We furthermore observe a general improvement of

5 https://pytorch.org
6 https://monai.io
7 https://pypi.org/project/nvflare

https://pytorch.org
https://monai.io
https://pypi.org/project/nvflare
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Fig. 2: The visual comparison of results from supernet before and after adaptation.
Left two figures show results from PROMISE12, and right two figures are from MSD.
Green contours denote ground truth (boundaries), and red contours are predictions
from neural networks. We can see that adaptation is not only able to remove false
positives, but also capable to correct false negative regions (highlighted by circles).

Table 2: Generalizability of the supernet models trained locally SN (loc.), in federated
learning SN (fed.), and after local adaptation SN (fed.) + adapt. Here, client
sites A, B, C, and D stand for NCI, PROMISE12, ProstateX, and MSD, respectively.
We show the local average performance of the models (Loc., same as in Tab. 1) and
the generalizability (Gen.), i.e. the Dice score on other clients’ test data. The total
average generalizability score is denoted as Gen. and the highest scores for each
dataset are marked in bold.

SN (loc.) SN (fed.) SN (fed.) + adapt
Test site Test site Test site

Train
site

A B C D Gen. A B C D Gen. A B C D Gen.

A 90.4 81.5 87.7 81.9 83.7 90.6 86.1 90.9 85.5 87.5 90.7 86.0 90.6 86.2 87.6
B 84.6 83.5 85.3 87.3 85.7 87.4 85.6 89.7 88.3 88.5 88.2 86.2 90.3 89.5 89.3
C 84.9 72.8 90.8 84.3 80.7 89.7 86.4 91.1 87.7 87.9 90.0 86.0 90.7 87.7 87.9
D 77.3 66.0 82.9 86.8 75.4 83.1 82.3 86.9 88.4 84.1 84.5 83.9 87.3 88.7 85.2

Loc. 87.9 Gen. 81.4 Loc. 88.9 Gen. 87.0 Loc. 89.1 Gen. 87.5

the local supernet models’ performance when trained in an FL setting versus local
training. This means that in particular supernet model training can benefit from the
larger effective training set size made available through FL without having to share
any of the raw image data between clients. Overall, we achieve average Dice scores
comparable to recent literature on whole prostate segmentation in MRI [16,17,20] and
can likely be improved with more aggressive data augmentation schemes [29,8]. Further
fine-tuning of the network weights (not the supernet path weights) is likely going to
give performance boost on a local client but is also expected to reduce generalizability
of the model. Methods of fine-tuning that do not reduce the robustness to other data
sources (i.e. generalizability) gained through FL (e.g. learning without forgetting [15])
is still an open research question and was deemed to be out of scope of this work.

In conclusion, we proposed to combine the advantages of both federated learning
and AutoML. The two techniques are complementary and in combination, they
allow for an implicit domain adaptation through the finding of locally optimal model
architectures (sub-networks of the supernet) for a client’s dataset. We showed that the
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performances of federated learning are comparable to the model’s performance when
the dataset is centrally hosted. After local adaptation via choosing the optimal path
through the supernet, we can see an additional performance gain on the client’s data. In
the future, it could be explored if there is a set of optimal sub-networks that could act
as an ensemble during inference to further improve performance and provide additional
estimates such as model uncertainty. Furthermore, one could adaptively change the
path frequencies used during supernet training based on sub-network architectures that
work well on each client in order to reduce communication cost and speed-up training.



10 ***

References

1. Cai, H., Zhu, L., Han, S.: Proxylessnas: Direct neural architecture search on target
task and hardware. arXiv preprint arXiv:1812.00332 (2018)
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