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Abstract. We demonstrate an object tracking method for 3D images
with fixed computational cost and state-of-the-art performance. Previous
methods predicted transformation parameters from convolutional layers.
We instead propose an architecture that neither flattens convolutional
features nor uses fully connected layers, but instead relies on equivariant
filters to preserve transformations between inputs and outputs (e.g., rota-
tions/translations of inputs rotate/translate outputs). The transformation
is then derived in closed form from the outputs of the filters. This method
is useful for applications requiring low latency, such as real-time tracking.
We demonstrate our model on synthetically augmented adult brain MRI,
as well as fetal brain MRI, which is the intended use-case.
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1 Introduction

Real-time prospective tracking and slice prescription in volumetric modalities
like MRI become possible as registration speeds approach slice acquisition/safety-
prescribed cooldown times [19,10]. If rigid landmarks are easily identifiable, rigid
tracking in volumes reduces to automatic tagging or segmentation. However,
in low signal-to-noise (SNR), low resolution applications such as fetal imaging,
standard anatomic landmarks may not be identifiable from images; it is helpful
in those cases to learn features that can be robustly detected. Moreover, if utility
is directly proportional to speed (e.g., for navigator scans), SNR and resolution
are reduced in favor of lower scan times. In this regime anatomic intuition may
no longer match imaging conditions, and relevant features may be more robust if
learned from images.

Recent learning based methods for rigid and affine registration have used
convolutional neural networks (CNNs), which generally have faster inference-time
speed than traditional image-grid iterative algorithms. CNN-based registrations
almost universally regress transformation parameters directly by applying a set
of stacked convolutional filters to images followed by a series of fully connected
layers. Such architectures are common in other vision tasks [2].
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Convolutions are translation equivariant: as inputs shift, output features shift
accordingly. However, the fully connected network that estimates transformation
parameters must learn from data a similar property between shifts and output
estimates; the network structure does not naturally give rise to these symmetries.
Moreover, neither structure encodes these properties naturally for rotation, and
thus the equivariances must be learned. This is inefficient in data and computation,
and, as we show, induces sub-optimal performance.

Instead, we constrain the feature extraction portion of networks (i.e., the con-
volutional filters) to be both translation and rotation equivariant. If the activation
maps shift and rotate with the target object, we can avoid the fully connected
regression step and instead compute least squares optimal transformations in
closed form from summary statistics of the activation maps. We introduce a novel
architecture for rigid tracking that leverages these two techniques. Our proposed
method has the same computational costs as regular convolution at inference
time, and we show that it provides more accurate tracking on human adult brain
MRI and our intended use-case of fetal brain MRI.

1.1 Previous Work

Real-time object tracking (rigid registration) in volumetric imaging has a long
history [5,20]. Early real-time methods in MRI and PET relied on either voxelwise
intensity matching and gradient descent on parameters [5,15], or intrinsic proper-
ties of the image acquisition in k-space e.g., the oversampling of low frequencies in
PROPELLER [11]. For adult human heads constrained by the physical geometry
of the head coil, observed shifts and rotations are small in scale (e.g., maximally
10 degrees [15]), and assumed to be global shifts of the entire non-zero acquisition
[11]. Later systems for adult human heads include “navigator” scans and Kalman
filters[19], but still consider a range of motion reasonable for scanning adults.

In fetal imaging, classical tracking methods such as PROPELLER fail in
practice [10]. Iterative intensity matching is feasible but tends to be slower due
to the extended search space [3] and multiple scales of image gridding.

Current methods in rigid and affine alignment are built almost exclusively
on convolutional networks [3,13,17]. As they have a fixed number of operations
which are amicable to GPU parallelization and compiler optimizations [4]. Salehi
et al. 2018 [12] use a regression similar to image prediction architectures [2],
where the reference and moving images are concatenated and provided as input
to a commonly used architecture of alternating convolution and pooling. This
leads to a flattening followed by a series of fully connected layers which estimate
transformation parameters. Chee et al. 2018 [3] and de Vos et al. 2019 [17] instead
use convolution layer stacks with separate inputs but shared weights.

We avoid the previous paradigm of stacked convolution to direct regression;
rigid motion has known analytic symmetries, properties which are ignored by the
structure of fully connected layers, and must be relearned in their parameters.
These same properties we exploit in our proposed method.

We emphasize that our work is unrelated to the slice-to-volume registration
problem [6], as our goal is to align volumetric 3D images.



Equivariant Filters for Efficient Tracking in 3D Imaging 3

IA

IB

fk T̂Conv F

Fully Connected

Regresses T from flattened F(IA ⊕ IB)

or F(IA)⊕F(IB)

“Conv to Flat to Fully Connnected”
Regression Archetype Assume

T ◦ IA = IB

Equivariant Filters to Closed Form Reg.
(Proposed Method)

IA

IB

fA
k

fB
k

xA
k

xB
k

{ }

{ }

{wA
k }

{wB
k }

T̂
Weighted

Least Squares
Alignment

(Closed Form)

Equivariant
Conv. F

Equivariant
Conv. F

Constructed s.t.
F(T ◦ I) = T ◦ F(I)

} TxA
k ≈ xB

k for k ∈ [K]

T̂ = arg minT

∑
k ‖TxA

k − xB
k ‖22

Shared
Parameters

Spatial Means
and Weights

1

Fig. 1: Our network method, along with the convolution archetypes.

2 Method

We assume that two given images IA and IB are related by an unknown rigid
transformation T, i.e.,

T ◦ IA = IB . (1)

A filter bank F : I → I(R+)K with K non-negative real-valued channels is called
equivariant1 under rigid transformations if for each channel Fk of F ,

Fk(T ◦ I) = T ◦ Fk(I). (2)

In other words, F is equivariant if the outputs of F translate and rotate as
the inputs are rotated and translated. Assuming F is equivariant and denoting
F(I) = f , we have

fB
k = Fk(IB) = Fk(T ◦ IA) = TfA

k . (3)

Since filter outputs {fA
k } and {fB

k } are in correspondence, we expect specific
summary statistics (e.g., spatial mean activation point) to similarly match across
images. Extracting the statistics from the filter outputs yields point clouds {xA

k }
and {xB

k } with correspondence. TxA
k = xB

k for k ∈ {1, . . . ,K} up to discretization
and resampling error. Thus, T can be estimated from {xA

k } and {xB
k } using for

example the least squares formulation [1,7,8].
Our proposed method implements the above procedure. It applies equivariant

filters to each volume, computes the spatial mean of each filter, and then estimates
the transformation that minimizes squared error, which in turn provides the
`2 optimal alignment of those spatial means between the volumes (Figure 1).
The learned parameters remain entirely in the equivariant filter construction;
1 More general forms of equivariance are defined in the literature [18], but this definition
is sufficient for our purposes. We do not use properties of any other form.



4 D. Moyer et al.

after filter outputs are collected all subsequent computations are analytically
prescribed. The entire structure is differentiable, thus a loss function on the
outputs can be backpropagated in order to train the equivariant filter parameters.
Losses may be defined either on transformations or on image differences under
the transformations (i.e., d(T̂ ◦ IA, IB) for image metric d).

2.1 Construction of Equivariant Convolutional Filters

Previously we defined F generally; however, F must be an efficient but expressive
differentiable operation on image arrays. This leads us to stacked convolutional
filters, which are already intrinsically equivariant to translation. In order to
ensure rotational equivariance, we follow the construction in Weiler et al. [18],
which retains translation equivariance.

Any rigid transformation T can be decomposed into translation t and rotation
R. Given a field F (x) over the spatial domain, the transformation operator is
ρ(R)F (R−1(x− t)), where the function ρ depends on the order of the field. While
the images we consider and our desired outputs are both scalar fields with trivial
ρ functions, for more expressive equivariant filters we require higher order fields
(e.g., vector or matrix valued fields). Conventional multi-channel image operations
use all scalar fields.

Weiler et al. [18] showed that convolutions between fields (“cross-correlation”
in other settings) can be expressed as a block diagonal operation between specific
basis components (irreducible representations), and that rotation equivariant
kernels are a linear subspace of the possible kernels. The authors then construct
a basis of such kernels analytically using spherical harmonics. Convolutions
expressed in this basis are weighted combinations of the basis elements, which
are analytically determined sub-blocks of conventional convolution kernels. These
may be pre-computed for given field orders and discrete kernel widths. The
weights between the basis elements form the learnable factors.

For a single channel (i.e., a scalar field), equivariant kernels must be isotropic
(i.e., having spherical isoclines). However, grouping multiple channels together into
higher order fields allows for non-isotropic equivariant kernels, acting on sets of
channels. Higher order convolutional fields also require specialized non-linearities,
but these are operationally the same as normal convolutions, and also without
learned parameters. We refer the reader to [18,14] for details. We stack alternating
layers of equivariant convolutions and their corresponding non-linearities to form
F , our equivariant filter bank.

2.2 Registration of Equivaritant Filters

We reduce each non-negative filter response fk to its mean spatial position

xk = 1
N1N2N3

∑
v

vfk(v) (4)

for images with dimension N1×N2×N3, where v`,m,n is the spatial coordinate of
image index (`,m, n), and fk(v`,m,n) is the corresponding value for the kth filter.
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Since fB
k = TfA

k , the spatial means of the filters will also be related similarly:
xB

k ≈ TxA
k . Here the error is due to discretization. This over-determined linear

system is then solved for rigid transformation T , which we can express as the
least squares problem:

T̂ = arg min
T

∑
k

‖xB
k − TxA

k ‖2
2. (5)

Analytic solutions have been described multiple times [1,7,8]. We further introduce
non-negative channel importance weights wA

k and wB
k , in order to reduce the

influence of less important filters; we use the total power of each channel, e.g.,
w̃A

k =
∑

v f
A
k (v) as proposal weights (filter outputs are non-negative), then

normalize to form wA
k = w̃A

k /
∑

k′ w′Ak , and similarly for {wB
k }. From these we

form generic channel weights wk = wA
k w

B
k , which we add to our optimization:

T̂ = arg min
T

∑
k

wk‖xB
k − TxA

k ‖2
2. (6)

As shown in [7], this also has an analytic solution similar to the unweighted
problem. Computing weighted centroids cA =

∑
k x

A
k wk and cB =

∑
k x

B
k wk, the

optimal translation is t̂ = cB − cA. Re-centering each point x̄A
k = xA

k − cA and
stacking the x̄A

k into matrices XA and XB, the optimal rotation is R̂ = V UT ,
where (X̄A)TWX̄B = UDV T is the SVD of the weighted cross correlation matrix
and W = diag(w1, . . . , wk).

2.3 Loss Functions and Implementations

Our architectures prescribe a forward operation. If the transformation parameters
are known, loss functions can be defined for the output rotation and translation
parameters. For translation parameters, the `2 loss is natural, but for rotation
parameters more nuanced metric spaces can also be used. Salehi et al. 2018 [12]
propose a geodesic loss on the rotation parameter matrix

Lgeo = arccos
{

(tr R̃R− 1)/2
}
. (7)

Zhou et al. [21] propose a projection and renormalization of the first two rows of
each rotation matrix (“6D-loss”)

L6D = ‖ ( R̃:,1:2/‖R̃:,1:2‖2 )− ( R:,1:2/‖R:,1:2‖2 ) ‖2 (8)

which they show to be continuous for all elements in SO(3).
In the absence of known transformation parameters we may also use image

losses under the estimated transformation, i.e.,

LImage = d(T ◦ IA, IB). (9)

Given a loss choice, we back-propagate errors and fit parameters by standard
gradient based optimization [2].
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Fig. 2: The training and results for our first experiment. At top in the blue box
we show central slices of the entire training dataset: a single subject in two poses.
Below in the red box we first show the central slices of the same subject in a
novel pose, then in the second row we show a reference volume transformed by
our estimated parameters. True and estimated parameters are shown at right.

Angular Error Translational Error Dice Index
Euler Angle ‖I −RR̂T ‖F mm Voxels –
2.0◦ ± 1.6 0.07± 0.03 6.1± 2.0 2.2± 0.7 0.96± 0.01

Table 1: Mean and std. of error measures for the first experiment averaged over
100 novel poses. The proposed method was trained on a single pair of images.
The Euler Angle error is the Mean Abs. Error in degrees averaged over the axes.

3 Experiments

We demonstrate our method in three separate empirical experiments, two on
subsets of the Human Connectom Project (HCP) young adult cohort [16], and one
on a fetal imaging dataset. The HCP dataset consists of subjects’ T2-weighted
brain volumes, downsampled from 0.7 mm isotropic to 2.8 mm isotropic, and
then padded to a 96x96x96 voxel volume. Images were masked for brain tissue
and histograms normalized by percentile filter; training-testing splits as well as
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Fig. 3: Testing results for the second experiment on HCP data (top row) and
for the third experiment with fetal MRI data (bottom row), measured by Dice
Index overlap of masks under estimated transformations between images. Each
inset indicates training under a different loss (`2, L6D [21], and Lgeo [12]), for
all methods. Higher is better, with 1 indicating perfect overlap. Conv P is
comparable to [3,17], while Conv C is comparable to [12].

data augmentation vary by experiment. The fetal dataset consists of MRI time-
series from 53 healthy mothers pregnant with healthy singletons at gestational
ages ranging from 25 to 35 weeks. MRI were acquired on a 3T Skyra Scanner
(Siemens Healthcare, Erlangen, Germany). Multislice single-shot gradient echo
EPI sequences were acquired at 3mm isotropic resolution, with a mean matrix size
(field-of-view) of 120x120x80 which we crop to 64x64x64, TR=5-8s, TE=32-38ms,
and 90 degree flip angles. Automatic brain masking was applied and dilated by 4
voxels to reflect uncertainty, after which images were intensity normalized.

In all three experiments training, validation, and testing datasets are com-
pletely disjoint, and in the latter two experiments subjects are not repeated in
separate poses between datasets i.e., no individuals are shared between train-
ing/validation/testing sets. For both datasets and all three experiments we train
both baseline methods and variations of our proposed method using the Adam
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optimizer [9] for 2000 epochs, taking the best performing parameters and hyper-
parameters with respect to a validation set. For all experiments batch size was
set to 1. Three separate losses were tested: Lgeo [12], L6D [21], and `2.

Parameters: After several preliminary experiments we selected a stack
of 5 equivariant convolutions, all with 5x5x5 kernels, using field-appropriate
ReLU non-linearities throughout, and 16, 16, and 4 fields of orders 0, 1, and 2
respectively, except for the final layer which has 64 scalar channels.

Baselines: We compare our method against two convolutional baseline ar-
chitectures, one using a combined processing stream (“Conv C”) as found in
[12], and one using separate, parallel convolutional processing streams with tied
weights (“Conv P”), as found in both [3] and [17]. For each method, we searched
over the number of layers and channels per layer for optimal configurations given
compute resources. We found the following to be optimal for our tests: 3 conv
layers of 3x3x3 kernels with 64 channels each, interspersed with 2x2x2 pooling,
followed by fully connected layers of 1024, 512, and 256 units, using ReLU acti-
vations throughout except for the output layer. The initial fully-connected layer
has more parameters than the entirety of our network.

Single Subject Experiment: In order to demonstrate the structural ad-
vantage of our method, we first train on just two volumes of one subject. As
Fig. 2, and Table 1 report, from this single example of a rotation our method
generalizes well to new poses of the same subject.

Group HCP Experiment: Next we train the network on 500 subjects from
the HCP dataset, holding out 100 for validation and 100 for testing, in order
to test the generalization of different methods across subjects. As shown in the
top row of Fig. 3, our method performs better than both baselines, though all
methods work reasonably well using either `2 or L6D losses.

Fetal Experiment: Our third experiment trains the proposed method on
the fetal MRI dataset, using 33 subjects for training (50 volumes per subject),
4 subjects held out for validation, and 16 subjects for testing (10 volumes per
subject). As shown in the bottom row of Figure 3, our method significantly
outperforms the baseline methods for this dataset. This may be due to the smaller
and more highly varying size of the fetal brains.

4 Discussion and Conclusion

We have described an equivariant filter based method for rigid tracking suitable
for applications where speed is paramount. As we have shown empirically, our
approach is demonstrably superior to methods based on conventional convolution.
Moreover, due to the equivariant property of the filters, it generalizes to unseen
poses by design. While a complete prospective motion correction system will
have multiple other components (e.g., reconstruction, denoising, masking, slice
proscription), tracking is a key step in this process, and accurate and efficient
methods for tracking such as the one introduced here are thus of value for building
such systems.
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