Skip to main content

Revisiting Iterative Highly Efficient Optimisation Schemes in Medical Image Registration

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12904))

Abstract

3D registration remains one of the big challenges in medical imaging, especially when dealing with highly deformed anatomical structures such as those encountered in inter- or intra-patient registration of abdominal scans. In a recent MICCAI registration challenge (Learn2Reg) deep learning based network architectures with inference times of <2 s showed great success for supervised alignment tasks. However, in unsupervised settings deep learning methods have not yet outperformed their conventional algorithmic counterparts based on continuous iterative optimisation (and probably won’t as they share the same objective function (image metric)). This finding has brought us to revisit conventional optimisation schemes and investigate an iterative message passing approach that enables fast runtimes (using iterative optimisation with only few displacement candidates) and high registration accuracy. We conduct experiments on three challenging abdominal datasets ((pre-aligned) inter-patient CT, intra-patient MR-CT) and carry out an in-depth evaluation with a set of selected comparison methods. Our results clearly indicate that optimisation based methods are highly competitive both in accuracy and runtime when compared to Deep Learning methods. Moreover, we show that semantic label information (when available) can be efficiently exploited by our approach (cf. weakly supervised learning). Data and code will be made publicly available to ensure reproducibility and accelerate research in the field of 3D medical registration (https://github.com/lasseha/iter_lbp).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akin, O., et al.: Radiology data from the cancer genome atlas kidney renal clear cell carcinoma [TCGA-KIRC] collection. Cancer Imaging Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.V6PBVTDR

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging (TMI) 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  4. Erickson, B., et al.: Radiology data from the cancer genome atlas liver hepatocellular carcinoma [TCGA-LIHC] collection. Cancer Imaging Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.IMMQW8UQ

  5. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005)

    Article  Google Scholar 

  6. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J. Comput. Vis. 70(1), 41–54 (2006)

    Article  Google Scholar 

  7. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)

    Article  Google Scholar 

  8. Hansen, L., Hering, A., Heinrich, M.P., Dalca, A., et al.: Learn2Reg: 2020 MICCAI registration challenge (2020). https://learn2reg.grand-challenge.org

  9. Heinrich, M.P.: Closing the gap between deep and conventional image registration using probabilistic dense displacement networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 50–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_6

    Chapter  Google Scholar 

  10. Heinrich, M.P., Hansen, L.: Highly accurate and memory efficient unsupervised learning-based discrete CT registration using 2.5D displacement search. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 190–200. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_19

    Chapter  Google Scholar 

  11. Heinrich, M.P., Jenkinson, M., Brady, S.M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imaging (TMI) 32(7), 1239–48 (2013)

    Article  Google Scholar 

  12. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24

    Chapter  Google Scholar 

  13. Isensee, F., Jäger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Meth. 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Jiang, W., Sun, W., Tagliasacchi, A., Trulls, E., Yi, K.M.: Linearized multi-sampling for differentiable image transformation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2988–2997 (2019)

    Google Scholar 

  15. Kabus, S., Klinder, T., Murphy, K., van Ginneken, B., Lorenz, C., Pluim, J.P.W.: Evaluation of 4D-CT lung registration. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 747–754. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04268-3_92

    Chapter  Google Scholar 

  16. Leow, A.D., et al.: Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration. IEEE Trans. Med. Imaging 26(6), 822–832 (2007)

    Article  Google Scholar 

  17. Linehan, M., et al.: Radiology data from the cancer genome atlas cervical kidney renal papillary cell carcinoma [KIRP] collection. Cancer Imaging Arch. (2016). https://doi.org/10.7937/K9/TCIA.2016.ACWOGBEF

  18. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21

    Chapter  Google Scholar 

  19. Sandkühler, R., Jud, C., Andermatt, S., Cattin, P.C.: AirLab: autograd image registration laboratory. arXiv preprint arXiv:1806.09907 (2018)

  20. Xu, Z., et al.: Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasse Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hansen, L., Heinrich, M.P. (2021). Revisiting Iterative Highly Efficient Optimisation Schemes in Medical Image Registration. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics