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Abstract. Cataract surgery is a sight saving surgery that is performed
over 10 million times each year around the world. With such a large
demand, the ability to organize surgical wards and operating rooms effi-
ciently is critical to delivery this therapy in routine clinical care. In this
context, estimating the remaining surgical duration (RSD) during pro-
cedures is one way to help streamline patient throughput and workflows.
To this end, we propose CataNet, a method for cataract surgeries that
predicts in real time the RSD jointly with two influential elements: the
surgeon’s experience, and the current phase of the surgery. We compare
CataNet to state-of-the-art RSD estimation methods, showing that it
outperforms them even when phase and experience are not considered.
We investigate this improvement and show that a significant contributor
is the way we integrate the elapsed time into CataNet’s feature extractor.

1 Introduction

Cataract surgery is one of the most common surgeries in the world, with over
10 million procedures conducted each year. Worldwide, 100 million people suffer
from cataract-induced vision impairments and with the aging world population
growing, the number of patients at risk of complete blindness is sharply increas-
ing [1]. Yet, even though cataracts can easily be treated, the shear number of
surgeries needed poses an organizational challenge of unprecedented scale.

At its core, cataract surgery involves using a surgical microscope to help
replace a patient’s eye lens, that has become opaque, with a synthetic clear lens.
Depending on the risk of the patient [2, 3] and the experience of the operating
surgeon [4, 5], the procedure can be performed in under 20 minutes, whereby
the majority of delicate surgical phases last 6-15 minutes. In major outpatient
cataract clinics, a single surgeon can operate over 50 patients in a given day. As
such, the ability to streamline patients and prepare them for surgery plays an
important role in surgical workflow and the organization around the operating
room. In this context, the ability to appropriately estimate remaining surgical
duration (RSD) is imperative to prepare the stream of upcoming patients and
doing so as early as possible is critical.
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Fig. 1: Surgeon experience and surgical phases play important roles in estimating
remaining surgical duration (RSD) in cataract surgery. RSD predictions at tHyd

allows for optimal operating room patient management.

To date, considerable efforts have been put into designing automated meth-
ods to predict RSD [6–12]. Namely, [13] presented the TimeLSTM network,
which combined a CNN and an RNN to perform RSD prediction. This method,
which achieves good results for cholecystectomy surgeries, pre-trained its CNN
for phase recognition thus requiring phase annotations. In an attempt to avoid
this requirement, [14] introduced RSDNet which only used unlabeled surgical
videos to predict the RSD. Relying on the implicit progress label of the videos,
the authors showed that either the surgical phase or progress labels could be
effectively utilized for RSD prediction on laparoscopic surgeries. In contrast to
laparoscopic procedures however, no RSD methods have focused on cataract
surgery. However, there is related research such as that of Neumuth et al. [15],
which proposed a surgical workflow management system potentially applicable
to RSD estimation. Similarly, [16, 17] detected the current phase in cataract
sequences from which RSD could be estimated. Yet these methods overlook im-
portant aspects: (1) surgeon experience plays a major factor in cataract surgery
duration [4, 5] and (2) assessing the risk of the patient by inspecting the initial
eye anatomy plays a key role in determining the difficulty and length of the
procedure [2, 3].

In this work, we thus present a novel approach for online RSD prediction in
cataract surgery. Our approach is to explicitly incorporate information from ob-
served surgical phases, the operating surgeon’s experience and the elapsed time
at any given point to infer RSD prediction. We do this by embedding the video
frames with the current elapsed time of the surgery, establishing a multi-task
learning problem, and jointly identifying the surgeon’s experience and the sur-
gical phase, whereby overcoming a number of important limitations from recent
methods (i.e., RSDNet and TimeLSTM). By doing so, our approach avoids in-
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Fig. 2: The end-to-end system. The inputs are video frames concatenated with
the elapsed time of the surgery. Inputs are individually fed into the CNN and
aggregated by the RNN, the output of which is finally passed through three in-
dependent fully connected layers to predict surgical phase, surgeon’s experience,
and RSD.

troducing additional complexities and yet considerably outperforms competing
methods on both average RSD measures and RSD estimates at early stages of
the surgery. In addition, we present an ablation study to identify the components
of our method that give rise to the performance reported3.

2 Approach

2.1 Model

Following [5], we identify three key factors that influence the RSD: the sur-
geon’s experience, the current surgical phase, and the elapsed time of the surgery
(Fig. 1). For accurate RSD estimation, it is thus critical that the predictive model
is aware of these factors when processing the input video. To that end, we in-
corporate the factors into the model in a number of ways. The elapsed time,
readily available at both training and inference time, is appended as an addi-
tional channel to the input video frames. On the other hand, surgeon’s experience
and surgical phase are unknown at inference time. Instead, we train the model
to estimate them from the input data.

Fig. 2 depicts our model and how these three predictive factors are incor-
porated into it. Formally, our model consists of a CNN f : [0, 1]3+1 → D that
maps the input tensor x̄t to a frame descriptor vector dt ∈ D, followed by a
RNN [18]g : D → D′ that incorporates temporal information to produce a video

descriptor vector d′t ∈ D′. We pass the input tensor x̄t =
[
xt,1

t
Tmax

]
, which

contains the input frame xt at time t and the elapsed time t as an additional
channel, to the CNN. The elapsed time is scaled to the range [0, 1] by dividing t

3 Code and instructive examples are available at github.com/aimi-lab/catanet.
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by the expected maximum video length Tmax that we set to 20 minutes. Passing
the elapsed time at the image level enables the CNN to learn its embedding.

Every video descriptor vector d′t produced by the LSTM is finally processed
with three independent fully connected layers (hexp, hphase, hrsd) to estimate

the surgeon’s experience ŷexp
t , the surgical phase ŷphase

t , and the RSD ŷrsdt . A

softmax non-linearity is applied to obtain the probabilities ŷexp
t and ŷphase

t .

2.2 Training objectives

Our training dataset is a collection of tuples
(
{xt}t, {yrsdt }t, {y

phase
t }t, yexp

)
con-

sisting of a video sequence xt, the corresponding remaining surgical duration yrsdt

per frame, surgical phases yphaset per frame, the surgeon’s experience label yexp

per sequence. The index t is the elapsed time of the sequence.
We use the labeled data to train our model by minimizing two different loss

functions. First, the CNN loss `cnn is used to train the standalone CNN, without
the RNN, to classify the phase and experience of individual frames. To this end,
we append two temporary linear layers, akin to hphase and hexp above, acting on
the output of the CNN dt to produce frame-level predictions ŷphase

cnn,t and ŷexp
cnn,t.

The CNN loss minimizes the cross-entropies of both predictions,

`cnn = H(ŷphase
cnn,t , y

phase
t ) + H(ŷexp

cnn,t, y
exp
t ). (1)

The RNN loss `rnn, on the other hand, is used with video sequences to train
the RNN and to fine-tune the entire model end-to-end. It is a combination of
the cross-entropies on phase and experience predictions, and the L1-norm of
RSD predictions,

`rnn = α
∣∣ŷrsdt − yrsdt

∣∣+ H(ŷphase
t , yphaset ) + H(ŷexp

t , yexpt ), (2)

where the hyperparameter α weights the relative contribution of the L1-norm.

3 Experiments

3.1 Training and test data

We used the cataract-101 dataset [5] containing 101 videos (1’263’116 frames)
with a resolution of 720 × 540 pixels acquired at 25 fps. We did not choose a
minimum video length, but used every video in the dataset. Each video is an-
notated with 10 surgical phases and the experience of the operating surgeon.
Surgeries were performed by four different surgeons, divided in two senior sur-
geons (56 surgeries) and two assistant surgeons (45 surgeries). In addition, we
manually labelled the start and end of each surgery, respectively, as the start of
the first incision and the last tool interaction with the patient’s eye.

The dataset was randomly split into 81 training and 20 test videos, so that
5 videos per surgeon remained in the test set. In the following experiments,
we perform 6-fold cross-validation on the training split for model selection and
hyper-parameter tuning. For inference, the output of all models is averaged.
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3.2 Implementation and baseline methods

Our CNN uses a DenseNet-169 [19] architecture pre-trained on ImageNet. Input
images are reshaped and cropped to 224×224, and the network produces descrip-
tor vectors dt of 1664 dimensions. We implement our RNN as a LSTM [18] with
two layers of 128 cells, producing 128-dimensional video descriptor vectors d′t.

Training is performed in four stages: (1) First, to tackle class imbalance in
surgical phases, we apply stratified sampling over the whole training dataset and
sample 8000 frames per phase. We train using the Adam optimizer with early
stopping in all training stages. The CNN is trained to minimize `cnn for 3 epochs
with a learning rate of 10−4, batch size of 100 and early stopping on sub-epoch
validation loss. (2) We minimize `rnn to train the RNN on full video sequences,
temporally downsampled to 2.5 fps, for 50 epochs and a learning rate 10−3.
The weights of the CNN are frozen during this stage. (3) The entire model
is trained end-to-end minimizing `rnn. We apply truncated back-propagation on
sub-sequences of 48 frames and setting the learning rate to 5 ·10−4 for 10 epochs.
(4) Finally, we fine-tune the RNN minimizing `rnn for another 20 epochs while
keeping the learning rate at 5 · 10−4. The weights of the CNN are frozen during
this stage. For the `2 loss, we set α = 1. We implemented our method with
PyTorch 1.6 and trained models using two Nvidia GeForce GTX 1080 Ti GPUs.

Given that no method for cataract RSD estimation exists, we compare our
approach to two methods originally designed for laparoscopic surgery:

TimeLSTM [13]: A ResNet CNN trained for phase recognition, followed by a
LSTM trained for RSD prediction.

RSDNet [14]: A modified version of [13], where the CNN is trained for progress
prediction and the elapsed time is concatenated to the LSTM’s output.

Both methods were originally proposed for cholecystectomy surgeries and did
not provide implementations. Therefore, we use our own implementations for
both baselines, following the respective publications.

We measure the quality of RSD predictions with the mean absolute error
(MAE) per video, MAE = 1

T

∑T−1
t=0

∣∣ŷrsdt − yrsdt

∣∣ . Similarly, we also provide MAE
averaged over the last two (MAE-2) and five (MAE-5) minutes, as well as at
the end of Hydrodissection phase (MAE@Hyd). The latter metric is of clinical
relevance in cataract surgery, as it highlights an appropriate time to prepare
the following patient for surgery. In addition, we compute frame-wise accuracy
(ACC) and F1-score per video to quantify surgical phase classification.

3.3 Results

Table 1 shows the RSD prediction performance for all methods grouped by
surgeon experience level. We group results by surgeon’s experience level as both
MAE and MAE@Hyd indirectly depend on the duration of the surgery and these
take 5.6 and 11.8 minutes on average for senior and assistant surgeons, respec-
tively. CataNet outperforms both RSDNet and TimeLSTM in all but one metric.
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Table 1: RSD prediction results. The MAE (mean±std in minutes) is shown for
entire videos, the last two and five minutes, and at the end of Hydrodissection.

Exp CataNet RSDNet TimeLSTM

MAE@Hyd
All 1.66± 1.35 2.32 ± 1.27 2.34 ± 1.54
Senior 1.22± 0.97 2.86 ± 1.31 3.30 ± 1.06
Assistant 2.10 ± 1.56 1.78 ± 1.02 1.39± 1.37

MAE-5
All 0.64± 0.56 1.37 ± 0.83 1.47 ± 0.78
Senior 0.78± 0.60 1.98 ± 0.73 2.06 ± 0.70
Assistant 0.51± 0.23 0.76 ± 0.28 0.88 ± 0.14

MAE-2
All 0.35± 0.20 1.23 ± 0.53 1.22 ± 0.32
Senior 0.37± 0.22 1.42 ± 0.45 1.43 ± 0.32
Assistant 0.34± 0.18 1.04 ± 0.56 1.03 ± 0.13

MAE
All 0.99± 0.65 1.59 ± 0.69 1.66 ± 0.79
Senior 0.83± 0.64 1.97 ± 0.73 2.11 ± 0.70
Assistant 1.15± 0.65 1.19 ± 0.36 1.20 ± 0.59

At the end of the critical Hydrodissection phase, for all experiences CataNet per-
forms 0.66 minutes better than RSDNet and 0.68 minutes better than TimeL-
STM. At the end of this phase, CataNet is considerably better than the baselines
for senior surgeons, but worse for assistant surgeons. Considering the prediction
over the whole video, CataNet performs on average 0.6 minutes better than RS-
DNet and 0.67 minutes better than TimeLSTM. This can be explained by the
fact that CataNet achieves comparable results for both senior and assistant sur-
geons. Overall, detection of the surgeon’s experience is achieved with 0.92±0.16
accuracy and can thus exploit the fact that senior surgeons show low variance in
surgery duration, however we do not claim that this accuracy would translate to
new surgeons. The competing methods, on the other hand, tend to overestimate
the duration of surgeries performed by senior surgeons.

We visualize CataNet’s results for individual videos shown in Fig. 3 (see
Supplementary material for more examples). Here, we see that predicting the
surgeon experience on every frame can be beneficial in determining the confi-
dence in RSD predictions. That is, given that the experience of the surgeon is
known by the operating staff, an incorrect classification in experience can serve
as an easy and interpretable indicator when the system is performing poorly
(i.e. overestimating the RSD for false assistant predictions, or underestimating
it for false senior predictions). Additionally, considering that experience is not a
binary label, but a multi factored and scaled concept, our approach could be used
to help assistant surgeons detect which phases of the surgery they could improve
on. Finally, in two test set sequences, the surgeons fails to correctly perform the
lens implantation phase, leading to unexpected extensions of the surgeries by 2-3
minutes and consequently underestimate of RSD before the mistake. However,
our approach corrects the RSD predictions shortly thereafter. Details of these
two sequences can be found in the supplementary material.
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Fig. 3: Four examples of our method’s outputs. For each plot, we show (top) the
concordance between ground-truth and predicted RSD, (middle) the ground-
truth and predicted surgical phases over time, and (bottom) the ground-truth
and predicted probability of the surgeon’s experience level.

Ablation study: CataNet is trained to classify the experience of the sur-
geon, the surgical phase, and the RSD, while its input is the video frames con-
catenated with the elapsed surgical time. To characterize the effects on perfor-
mance of these different components, we show the performance of the following
different approaches in Table 2: (i) train the CNN to only predict surgical phases
and the RNN to predict both phases and RSD; (ii) train the CNN to only pre-
dict the surgeons experience and the RNN to predict both experience and RSD;
(iii) train the CNN and the RNN to estimate only the RSD; (iv) same as (iii) but
concatenate the elapsed time to the output of the LSTM (i.e., as in RSDNet)
instead of to the video frames.

From these experiments, we can see that (i) generally performs as well as
CataNet, even outperforming it for some metrics. However, CataNet generally
achieves a better performance for senior surgeons, who conduct the bulk of actual
cataract surgeries [20]. In addition, we notice that (iii) performs better than
(iv), showing that using the elapsed time as an input for the model considerably
outperforms having it after the LSTM layer. Last, even when training without
any labels, our approach (iii) performs better than that of RSDNet.

Results on surgical phase classification: Table 3 shows CataNet’s per-
formance for phase classification. Compared to the state-of-the-art by Qui et
al. [21], CataNet achieves an increase of 12% in accuracy from 0.84 to 0.95. Fur-



8 A. Marafioti et al.

Table 2: Ablation evaluation for RSD prediction.
Exp CataNet (i) phase (ii) exp (iii) RSD (iv) elapsed

MAE@Hyd
All 1.66 ± 1.35 1.43± 1.19 1.82 ± 1.63 1.99 ± 1.38 2.28 ± 1.34
Senior 1.22± 0.97 1.42 ± 1.38 1.46 ± 1.3 1.71 ± 1.24 1.45 ± 0.59
Assistant 2.10 ± 1.56 1.43± 1.05 2.18 ± 1.91 2.26 ± 1.52 3.12 ± 1.37

MAE-5
All 0.64± 0.46 0.74 ± 0.56 0.87 ± 0.62 0.76 ± 0.41 0.75 ± 0.34
Senior 0.78± 0.60 0.88 ± 0.73 0.99 ± 0.77 0.98 ± 0.44 0.85 ± 0.31
Assistant 0.51± 0.23 0.59 ± 0.27 0.76 ± 0.43 0.55 ± 0.24 0.64 ± 0.34

MAE-2
All 0.35± 0.20 0.35± 0.23 0.51 ± 0.27 0.39 ± 0.28 0.44 ± 0.20
Senior 0.37 ± 0.22 0.35± 0.26 0.52 ± 0.36 0.45 ± 0.38 0.51 ± 0.22
Assistant 0.34 ± 0.18 0.36 ± 0.21 0.50 ± 0.18 0.33± 0.10 0.36 ± 0.15

MAE
All 0.99 ± 0.65 0.98± 0.58 1.22 ± 0.92 1.11 ± 0.62 1.34 ± 0.73
Senior 0.83± 0.64 0.91 ± 0.77 1.03 ± 0.80 1.03 ± 0.46 0.83± 0.30
Assistant 1.15 ± 0.65 1.04± 0.31 1.41 ± 1.03 1.20 ± 0.76 1.85 ± 0.67

thermore, CataNet reliably detects the Hydrodissection phase, which is critical
in the clinical context. Indeed, knowing the RSD at the end of this phase will
improve the OR management since it corresponds to the moment where the next
patient could be prepared for surgery.

Inference speed: RSD estimation is intended to be performed on real-
time. We measured the execution time using a GeForce MX250 and avoided any
overhead produced by other components of the system. We first run 100 frames
through the GPU after which we measured the inference time on the next 1000
frames. The average time per frame was 34.3 ± 1.9 ms, which corresponds to
29.09 fps. Considering that we sample the videos at 2.5 fps, we conclude that
CataNet can easily be applied at 10 times real-time speed.

4 Conclusion

We have proposed a novel real-time method for estimating RSD for cataract
surgeries from video feeds. Our approach jointly predicts the RSD, the surgeon’s
experience and the surgical phase, as these three elements are interconnected.
Even when training our method without any labels, it outperforms the previ-
ous state-of-the-art RSD estimation models. We investigated the sources of this
improvement and attribute these to (1) concatenating the video frames with
the elapsed time and (2) including the phase and experience labels. Predicting
the experience on every frame additionally increases the clinical applicability of
our method by identifying low method confidence by observing predicted and
real experience levels. Moving forward, a major challenge is in establishing large
datasets to evaluate generalization capabilities and major clinical impact [22],
for which assuring data consistency will be critical [23]. In the future, we plan
to investigate this and how pre-operative data can be used to further improve
RSD predictions for cataract surgery.
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Table 3: Macro F1-score and micro accuracy averaged over the 6-fold models.
CataNet Qui et al. [21] TimeLSTM-CNN [13]

F1 0.93± 0.06 - 0.80 ± 0.07
F1-Hyd 0.94± 0.08 - 0.84 ± 0.17
ACC 0.95± 0.05 0.84 ± 0.06 0.84 ± 0.07
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