Skip to main content

Task Fingerprinting for Meta Learning inBiomedical Image Analysis

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Shortage of annotated data is one of the greatest bottlenecks in biomedical image analysis. Meta learning studies how learning systems can increase in efficiency through experience and could thus evolve as an important concept to overcome data sparsity. However, the core capability of meta learning-based approaches is the identification of similar previous tasks given a new task - a challenge largely unexplored in the biomedical imaging domain. In this paper, we address the problem of quantifying task similarity with a concept that we refer to as task fingerprinting. The concept involves converting a given task, represented by imaging data and corresponding labels, to a fixed-length vector representation. In fingerprint space, different tasks can be directly compared irrespective of their data set sizes, types of labels or specific resolutions. An initial feasibility study in the field of surgical data science (SDS) with 26 classification tasks from various medical and non-medical domains suggests that task fingerprinting could be leveraged for both (1) selecting appropriate data sets for pretraining and (2) selecting appropriate architectures for a new task. Task fingerprinting could thus become an important tool for meta learning in SDS and other fields of biomedical image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the SciPy [42] implementation of the Wasserstein distance.

  2. 2.

    We used the implementations from [43] and the models CSPNet (cspdarknet53, cspresnext50), ECA-Net (ecaresnet50d), EfficientNet (tf_efficientnet_b2_ns), DPN (dpn68b), MixNet (mixnet_xl), RegNetY (regnety_032), ResNeXt (swsl_resnext50_32x4d), ReXNet (rexnet_200), VovNet2 (ese_vovnet39b) and Xception (xception). Please refer to the documentation of [43] for full references of these.

References

  1. Achille, A., et al.: Task2Vec: Task Embedding for Meta-Learning. ArXiv (2019)

    Google Scholar 

  2. Achille, A., et al.: The Information Complexity of Learning Tasks, their Structure and their Distance. ArXiv (2019)

    Google Scholar 

  3. Ali, S., et al.: Endoscopy artifact detection (EAD 2019) challenge dataset. ArXiv (2019)

    Google Scholar 

  4. Allan, M., et al.: 2017 robotic instrument segmentation challenge. ArXiv (2019)

    Google Scholar 

  5. Bhattacharjee, B., et al.: P2L: predicting transfer learning for images and semantic relations. In: CVPR Workshops (2020)

    Google Scholar 

  6. Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 1–14 (2020)

    Article  Google Scholar 

  7. Cheplygina, V.: Cats or cat scans: transfer learning from natural or medical image source datasets? ArXiv (2018)

    Google Scholar 

  8. Cheplygina, V., et al.: Exploring the similarity of medical imaging classification problems. In: CVII-STENT/LABELS@MICCAI (2017)

    Google Scholar 

  9. Cheplygina, V., et al.: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 54, 280–296 (2019)

    Article  Google Scholar 

  10. Cohen, G., et al.: EMNIST: an extension of MNIST to handwritten letters. ArXiv (2017)

    Google Scholar 

  11. Combalia, M., et al.: BCN20000: dermoscopic lesions in the wild. ArXiv (2019)

    Google Scholar 

  12. Dabak, A., et al.: Relations between kullback-leibler distance and fisher information (2002)

    Google Scholar 

  13. Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  14. Faria, S.M., et al.: Light field image dataset of skin lesions. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2019)

    Google Scholar 

  15. Fei-Fei, L., et al.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: CVPR Workshops (2004)

    Google Scholar 

  16. Gretton, A., et al.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Griffin, G., et al.: Caltech-256 object category dataset (2007)

    Google Scholar 

  18. Gutman, D., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (2018)

    Google Scholar 

  19. He, K., et al.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  20. Hospedales, T.M., et al.: Meta-learning in neural networks: a survey. ArXiv (2020)

    Google Scholar 

  21. Kamada, T., et al.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kawahara, J., et al.: Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J. Biomed. Health Inform. 23(2), 538–546 (2019)

    Article  Google Scholar 

  23. Khosla, A., et al.: Novel dataset for fine-grained image categorization. In: First Workshop on Fine-Grained Visual Categorization, IEEE Conference on Computer Vision and Pattern Recognition. Colorado Springs, CO (2011)

    Google Scholar 

  24. Kingma, D.P., et al.: Adam: a method for stochastic optimization. CoRR (2015)

    Google Scholar 

  25. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  26. LeCun, Y., et al.: Gradient-based learning applied to document recognition (1998)

    Google Scholar 

  27. Leibetseder, A., et al.: LAPGYN4: a dataset for 4 automatic content analysis problems in the domain of laparoscopic gynecology. In: Proceedings of the 9th ACM Multimedia Systems Conference (2018)

    Google Scholar 

  28. Leibetseder, A., et al.: Glenda: gynecologic laparoscopy endometriosis dataset. In: MMM (2020)

    Google Scholar 

  29. Maier-Hein, L., et al.: Can masses of non-experts train highly accurate image classifiers? - a crowdsourcing approach to instrument segmentation in laparoscopic images. In: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention (2014)

    Google Scholar 

  30. Maier-Hein, L., et al.: Surgical Data Science – from Concepts to Clinical Translation. ArXiv, October 2020

    Google Scholar 

  31. Moccia, S., et al.: Confident texture-based laryngeal tissue classification for early stage diagnosis support. J. Med. Imaging 4(3), 034502 (2017)

    Article  Google Scholar 

  32. Moccia, S., et al.: Learning-based classification of informative laryngoscopic frames. Comput. Methods Programs Biomed. 158, 21–30 (2018)

    Article  Google Scholar 

  33. Netzer, Y., et al.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  34. Pogorelov, K., et al.: Nerthus: a bowel preparation quality video dataset. In: Proceedings of the 8th ACM on Multimedia Systems Conference, MMSys 2017. ACM, New York (2017)

    Google Scholar 

  35. Raghu, M., et al.: Transfusion: understanding transfer learning for medical imaging. In: NeurIPS (2019)

    Google Scholar 

  36. Ross, T., et al.: Exploiting the potential of unlabeled endoscopic video data with self-supervised learning. Int. J. Comput. Assist. Radiol. Surg. 13(6), 925–933 (2018). https://doi.org/10.1007/s11548-018-1772-0

    Article  Google Scholar 

  37. Ross, T., et al.: Robust medical instrument segmentation challenge 2019 (2020)

    Google Scholar 

  38. Rubner, Y., et al.: A metric for distributions with applications to image databases. In: Sixth International Conference on Computer Vision (1998)

    Google Scholar 

  39. Tschandl, P., et al.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  40. Twinanda, A.P., et al.: Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2017)

    Article  Google Scholar 

  41. Vilalta, R., et al.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2005)

    Article  Google Scholar 

  42. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020)

    Article  Google Scholar 

  43. Wightman, R.: Pytorch image models (2019). https://doi.org/10.5281/zenodo.4414861

  44. Yuan, P., et al.: Few is enough: task-augmented active meta-learning for brain cell classification. In: Marte, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 367–377. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_36

    Chapter  Google Scholar 

  45. Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our colleagues Minu Dietlinde Tizabi, Tim Adler, Thuy Nuong Tran, Tobias Ross and Lucas-Raphael Müller for their valuable feedback on the drafts of this work. This project has been funded by the Surgical Oncology Program of the National Center for Tumor Diseases (NCT) Heidelberg. The present contribution is also supported by the Helmholtz Imaging Platform (HIP), a platform of the Helmholtz Incubator on Information and Data Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Godau .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 356 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Godau, P., Maier-Hein, L. (2021). Task Fingerprinting for Meta Learning inBiomedical Image Analysis. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics