Skip to main content

Surgical Workflow Anticipation Using Instrument Interaction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12904))

Abstract

Surgical workflow anticipation, including surgical instrument and phase anticipation, is essential for an intra-operative decision-support system. It deciphers the surgeon’s behaviors and the patient’s status to forecast surgical instrument and phase occurrence before they appear, providing support for instrument preparation and computer-assisted intervention (CAI) systems. We investigate an unexplored surgical workflow anticipation problem by proposing an Instrument Interaction Aware Anticipation Network (IIA-Net). Spatially, it utilizes rich visual features about the context information around the instrument, i.e., instrument interaction with their surroundings. Temporally, it allows for a large receptive field to capture the long-term dependency in the long and untrimmed surgical videos through a causal dilated multi-stage temporal convolutional network. Our model enforces an online inference with reliable predictions even with severe noise and artifacts in the recorded videos. Extensive experiments on Cholec80 dataset demonstrate the performance of our proposed method exceeds the state-of-the-art method by a large margin (1.40 v.s. 1.75 for inMAE and 2.14 v.s. 2.68 for eMAE). The code is published on https://github.com/Flaick/Surgical-Workflow-Anticipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu Farha, Y., Richard, A., Gall, J.: When will you do what?-anticipating temporal occurrences of activities. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5343–5352 (2018)

    Google Scholar 

  2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  3. Czempiel, T., et al.: TeCNO: surgical phase recognition with multi-stage temporal convolutional networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 343–352. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_33

    Chapter  Google Scholar 

  4. Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., Song, L.: Recurrent marked temporal point processes: embedding event history to vector. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1555–1564 (2016)

    Google Scholar 

  5. Farha, Y.A., Gall, J.: MS-TCN: multi-stage temporal convolutional network for action segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3575–3584 (2019)

    Google Scholar 

  6. Farhadi, A., Redmon, J.: Yolov3: an incremental improvement. Computer Vision and Pattern Recognition, cite as (2018)

    Google Scholar 

  7. Forestier, G., Petitjean, F., Riffaud, L., Jannin, P.: Automatic matching of surgeries to predict surgeons’ next actions. Artif. Intell. Med. 81, 3–11 (2017)

    Article  Google Scholar 

  8. Funke, I., Mees, S.T., Weitz, J., Speidel, S.: Video-based surgical skill assessment using 3D convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 14(7), 1217–1225 (2019)

    Article  Google Scholar 

  9. Gao, J., Yang, Z., Nevatia, R.: Red: reinforced encoder-decoder networks for action anticipation. arXiv preprint arXiv:1707.04818 (2017)

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  13. Jin, A., et al.: Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 691–699. IEEE (2018)

    Google Scholar 

  14. Jin, Y., et al.: SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network. IEEE Trans. Med. Imaging 37(5), 1114–1126 (2017)

    Article  Google Scholar 

  15. Ke, Q., Fritz, M., Schiele, B.: Time-conditioned action anticipation in one shot. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9925–9934 (2019)

    Google Scholar 

  16. Klank, U., Padoy, N., Feussner, H., Navab, N.: Automatic feature generation in endoscopic images. Int. J. Comput. Assist. Radiol. Surg. 3(3), 331–339 (2008)

    Article  Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  18. Liang, J., Jiang, L., Niebles, J.C., Hauptmann, A.G., Fei-Fei, L.: Peeking into the future: Predicting future person activities and locations in videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5725–5734 (2019)

    Google Scholar 

  19. Mahmud, T., Hasan, M., Roy-Chowdhury, A.K.: Joint prediction of activity labels and starting times in untrimmed videos. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5773–5782 (2017)

    Google Scholar 

  20. Maier-Hein, L., et al.: Surgical data science for next-generation interventions. Nature Biomed. Eng. 1(9), 691–696 (2017)

    Article  Google Scholar 

  21. Padoy, N.: Machine and deep learning for workflow recognition during surgery. Minimally Invasive Ther. Allied Technol. 28(2), 82–90 (2019)

    Article  Google Scholar 

  22. Pfeiffer, M., et al.: Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_14

    Chapter  Google Scholar 

  23. Rivoir, D., et al.: Rethinking anticipation tasks: uncertainty-aware anticipation of sparse surgical instrument usage for context-aware assistance. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 752–762. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_72

    Chapter  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Twinanda, A.P., Mutter, D., Marescaux, J., de Mathelin, M., Padoy, N.: Single-and multi-task architectures for surgical workflow challenge at m2cai 2016. arXiv preprint arXiv:1610.08844 (2016)

  27. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2016)

    Article  Google Scholar 

  28. Twinanda, A.P., Yengera, G., Mutter, D., Marescaux, J., Padoy, N.: RSDNet: learning to predict remaining surgery duration from laparoscopic videos without manual annotations. IEEE Trans. Med. Imaging 38(4), 1069–1078 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yuan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2461 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, K., Holden, M., Gao, S., Lee, WS. (2021). Surgical Workflow Anticipation Using Instrument Interaction. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics