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Abstract. Fusing intra-operative 2D transrectal ultrasound (TRUS)
image with pre-operative 3D magnetic resonance (MR) volume to guide
prostate biopsy can significantly increase the yield. However, such a mul-
timodal 2D/3D registration problem is very challenging due to several
significant obstacles such as dimensional mismatch, large modal appear-
ance difference, and heavy computational load. In this paper, we propose
an end-to-end frame-to-volume registration network (FVR-Net), which
can efficiently bridge the previous research gaps by aligning a 2D TRUS
frame with a 3D TRUS volume without requiring hardware tracking.
The proposed FVR-Net utilizes a dual-branch feature extraction module
to extract the information from TRUS frame and volume to estimate
transformation parameters. To achieve efficient training and inference,
we introduce a differentiable 2D slice sampling module which allows gra-
dients backpropagating from an unsupervised image similarity loss for
content correspondence learning. Our experiments demonstrate the pro-
posed method’s superior efficiency for real-time interventional guidance
with highly competitive registration accuracy. Source code of this work
is publicly available at https://github.com/DIAL-RPI/FVR-Net.

Keywords: 2D/3D Registration, Ultrasound Imaging, End-to-end, Deep
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1 Introduction

Prostate cancer is a leading cause of cancer death for men in the United States
[18]. Fusing transrectal ultrasound (TRUS) and magnetic resonance imaging
(MRI) has been proven efficient for guiding targeted biopsies to more accu-
rately diagnose the disease [1, 16]. Real-time 2D TRUS imaging is registered to
a pre-operative 3D MRI volume for joint visualization during the fusion-guided
procedures. Benefited by the time-efficient imaging of TRUS and high resolu-
tion of MRI, clinicians can locate the targeted lesions, thus increase the biopsy
yield. The core of this technology is to register 2D TRUS images with a 3D MRI
volume, which is a very challenging problem.
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Existing fusion systems usually rely on external tracking devices to establish
the registration [2, 9, 14, 21]. The workflow involves reconstructing a 3D TRUS
volume from a sequence of tracked 2D TRUS video frames, which is then aligned
with the pre-operative MRI volume through 3D-3D image registration. During
the interventional guidance stage, a tracked 2D TRUS frame is mapped to the 3D
TRUS volume and then transformed into the MRI image space for fusion. These
tracking-based methods require a hardware setup, which induces additional cost
and human effort.

Recent advances in deep learning (DL) based image registration and volume
reconstruction have enabled new opportunities to shift the MRI/TRUS fusion
paradigm. Hu et al. [7] first proposed a weakly supervised method that uses land-
mark annotations as auxiliary information for training an end-to-end registration
network. Haskins et al. [6] developed a convolutional neural network (CNN) to
learn the deep similarity metric between TRUS and MRI volume for the iterative
registration. Guo et al. [4] proposed a multi-stage registration framework that
aligns a TRUS/MRI pair from coarse to fine. Deep learning has also been used
for sensorless US volume reconstruction. Prevost et al. [17] proposed to use a
CNN for directly estimating the inter-frame motion between two 2D US frames,
which enables sensorless US volume reconstruction. One recent work [5] applies
3D CNN on a US video sub-sequence to better utilize the temporal context in-
formation for sensorless TRUS volume reconstruction. With the existing efforts,
we are one step away from building a DL-based trackingless fusion system.

The objective of our work presented in this paper is to bridge the above re-
search gap by developing a 2D TRUS image to 3D TRUS volume trackingless
registration method. 2D/3D image registration is also often referred as slice-to-
volume registration. Conventional approaches have tried to optimize the reg-
istration field according to an image matching criterion, which quantifies the
alignment between the images and guides the optimization process. Classical
matching criteria use pixel/voxel intensities to quantify the image similarity. For
example, Wein et al. [19] proposed a similarity measure named linear correlation
of linear combination, which reveals the correspondence between simulated US
images with MRI/Computed tomography (CT). However, the iterative optimiza-
tion methods are time-consuming, typically taking seconds or more to register a
single pair of images, making them unsuitable for interventional guidance. An-
other group of 2D/3D registration methods aims to align a 2D projective image
with a 3D volume, which typically applies to 2D X-ray with 3D CT volume
registration. For example, Miao et al. [12, 13] proposed to use CNN to directly
predict the transformation parameters to perform 3D model to 2D X-ray regis-
tration. However, such projective 2D/3D registration is entirely different from
our targeted application and thus not applicable.

In this paper, we propose a novel end-to-end frame-to-volume registration
network (FVR-Net) to bridge the gap in real-time TRUS/MRI fusion for guid-
ing prostate biopsy. The underlying framework takes one real-time 2D TRUS
frame and one reconstructed 3D TRUS volume as input to estimate the trans-
formation parameters that best align these two images. We proposed a dual-
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Fig. 1. Illustration of the rigid frame-to-volume registration in this work. The pink
cube represents the boundaries of the input 3D ultrasound image volume.

branch balanced feature extraction network, which makes the model sensitive
to both the frame and volume information. Besides, we introduce an auxiliary
image similarity loss for end-to-end training which can significantly reduce the
registration error. The experiments demonstrate that using CNN for FVR prob-
lems is highly promising, achieving competing performance to the conventional
iterative registration methods while running tens of times faster.

2 Problem Definition

In this section, we give a formal definition of the mono-modal 2D TRUS frame
to 3D TRUS volume registration problem. Fig. 1 illustrates the overall imple-
mentation workflow. Given a 2D TRUS frame If (fixed image) and a 3D TRUS
volume Im (moving image) as input, we seek a mapping function θopt through
minimizing the following objective function:

θopt = arg min
θ
Sim(If , P (Im; θ)), (1)

where P (Im; θ) denotes the slice extracted from Im and specified by the trans-
formation θ and the sampling plane P , which is permanently set to be the xOy
plane. Sim() is the matching criterion, which quantifies the image similarity
between the 2D frame If and the resampled slice P (Im; θ). By default, for a
volume transformed by an identical transformation θinit as the initialization,
the volume’s center is placed at the coordinate system’s origin. The goal of the
frame-to-volume registration is to find the optimal transformation parameters
θopt, such that the resampled slice P (Im; θopt) has the highest image similarity
as the 2D input frame If .
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Fig. 2. Overall network structure of the proposed FVR-Net.

3 Method

This section presents the key components of the proposed method. Fig. 2 depicts
the proposed end-to-end frame-to-volume registration network (FVR-Net). The
FVR-Net takes an 2D TRUS frame and a 3D volume as input for estimating
the transformation T (θ), such that the transformed volumetric image and the
sampling plane’s cross-sectional area P (Im; θ) has the highest image similarity
with the 2D TRUS image frame If . We found the rigid registration can best
suit in our application without loss of generality. Thus, the FVR-Net’s output
θ contains 6 degrees of freedom, i.e. θ = {tx, ty, tz, αx, αy, αz}, including the
translations and rotations along the three axes.

3.1 End-to-end Slice-to-Volume Registration

In this end-to-end FVR framework, we define the real-time 2D transrectal ul-
trasound image frame as the fixed image If (H ×W ), and the reconstructed 3D
TRUS image subvolume as the moving image Im (D ×H ×W ).
Dual-branch Balanced Feature Extraction The dimension gap between
2D and 3D images is a major obstacle for the registration performance. Directly
concatenating these two inputs together (early-fusion) can make the network
overwhelmed by the volumetric information while completely ignoring the 2D
image contents. Instead, to balance the data information, we designed a dual-
branch network structure to extract the image features from the frame and
volume independently and then concatenate them in a late-fusion fashion.

In the frame branch, we first use a 2D convolutional layer to extract the
low-level features for the input frame and extend the channel number to D,
such that the feature map’s size matches the input volume’s size, thus achiev-
ing the data information balance. From this point, each branch is followed by
two 3D convolutional blocks with the same hyper-parameters to maintain the
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identical feature map size. The extracted feature maps from both branches are
concatenated together along the depth dimension and then serve as the input
to the localization-net for estimating the transformation parameters θ. A su-
pervised mean squared error (MSE) loss can be computed, which directly uses
ground-truth labeling information to constraint the θ estimation:

Ltrans =
1

N

N∑
n=1

‖δθn − θn‖2 , (2)

where N denotes the total number of 2D/3D sample pairs within one training
epoch, and δθ denotes the transformation parameters label. The localization-net
uses ResNext [20] as the backbone structure. The proposed dual-branch feature
extraction can ensure that the most representative image features can be learned
from the images with different dimensions.
Differentiable 2D Slice Sampling Inspired by the spatial transformer net-
work (STN) [8], we designed a 2D slice sampling module that can introduce a
new unsupervised image similarity loss for stabilizing the training process. This
module has two components: the affine grid generator and the resampler. Our
customized affine grid generator takes the estimated parameters θ as input and
generates a transformed resampling grid Tθ (G), which has the same size as the
moving image m. By applying bilinear interpolation at each point location de-
fined by the sampling grid, the resampler can get the intensity at a particular
pixel in the wrapped image. Thus, a target 2D slice P (Im; θ), noted as Im◦Tθ(G)
in Fig.2, can be sampled from the 3D input volume Im transformed by the es-
timated parameters θ. This FVR-Net predicted target slice denotes the results
from the 2D/3D registration framework and should ideally contain the same
information as the input 2D frame.

Through the partial derivative, the loss gradients can be backpropagated to
the sampling grid coordinates, and furthermore, to the affine transformation
parameters and the localization net. This makes the entire pipeline of the FVR-
Net differentiable and can be easily trained in an end-to-end manner [8]. We
further introduce an auxiliary image similarity loss, modified from Eq. 1:

Lsim =
1

N

N∑
n=1

‖If,n − P (Im,n; θn)‖2 , (3)

Theoretically, the FVR-Net can be trained in an unsupervised fashion by using
the Lsim alone. However, in practice, we found this yielding an unstable train-
ing process. When Ltrans and Lsim are used together to update the network’s
parameters, the FVR-Net shows the most robust registration performance.

3.2 Implementation Details

To help the network focus on the prostate-relevant features, 2D input frames
are center-cropped with a window size of 128 × 128 pixels. Ideally, the 3D vol-
ume should be kept intact such that the volume can always contain a full view
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of the 2D frame for registration. However, such an implementation encounters
two difficulties. (1) The reconstructed volumes are in different sizes, making it
difficult to design a network structure with fixed input and output sizes. (2)
The volumes’ average size is too big, making the searching space too big for the
network to find the optimal transformation.

We propose a data sampling strategy to solve the above issues, which also
serves as an augmentation method for network training. By referring to the
clinical application, we propose to sample a smaller subvolume as the searching
space based on a random initial transformation θinit within a manually defined
range R. For example, if we are looking for the nth frame fn’s position θn
during the registration, one neighboring frame within the range of [n−R,n+R]
is randomly chosen as the initial reference frame finit, which has the position of
θinit. A subvolume size of 128× 128× 32 is cropped at the center of finit, which
serves as the 3D volume input to the network. In our experiments, we set the
frame range R = 10 to ensure that the subvolume around the initial frame finit
contains the target frame fn. Taking this subvolume as the input, the network
is trained to estimate the relative transformation parameters δθ which is the
difference between θn and θinit, calculated through matrix manipulation.

4 Experiments and Results

4.1 Datasets and Experimental Setting

All the ultrasound volumes used in this work were collected from clinical studies
using an EM-tracking enabled fusion system. The dataset contains 619 TRUS
volumes reconstructed from tracked TRUS frames acquired by a Philips iU22
scanner, all from different subjects. The dataset is further divided into 488, 65,
66 cases for training, testing, and validation. Each TRUS frame has an associated
positioning transformation matrixM , describing the spatial relationship between
the frame and the reconstructed volume. We use this information as the ground
truth label for network training and validation. Our network was trained for 150
epochs with batch size K = 24 using Adam optimizer [10] with an initial learning
rate of 5×10−5, which decays by 0.9 after every five epochs. We implemented
the FVR-Net using the Pytorch library [15].

4.2 Results Evaluation

Since DL-based projective 2D/3D registration does not apply well to our prob-
lem, we compare our method with conventional iterative image registration
methods as shown in Table 1. The baseline methods use mean square error (MSE)
or normalized cross-correlation (NCC) as the image similarity metric, optimized
with gradient descent [11] (GD) or Powell [3] optimizer. For the random guess,
the transformation parameters were randomly sampled from the training set’s
statistics.

For evaluation, the distance error (DistErr) denotes the average distance in
millimeters between the groundtruth-sampled slice and the predicted-sampled
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Table 1. Performance comparison of our FVR-Net and baseline methods.

Method
DistErr

(mm)
ImgSim
(NCC)

Correlation RunTime
(s)tX tY tZ aX aY aZ Mean

Random Guess 5.86 0.55 -0.01 0.05 0.03 -0.08 0.05 -0.06 0.00 -
NCC + GD 3.43 0.91 0.70 0.70 0.94 0.66 0.29 0.59 0.64 3.98
MSE + GD 3.20 0.90 0.60 0.66 0.94 0.64 0.21 0.55 0.60 3.64
NCC + Powell 3.02 0.91 0.43 0.86 0.89 0.80 0.13 0.51 0.60 7.60
MSE + Powell 2.85 0.92 0.64 0.90 0.99 0.79 0.36 0.63 0.72 5.85
FVR-Net (Best) 2.73 0.92 0.69 0.88 0.96 0.96 0.17 0.08 0.62 0.07

Table 2. Ablation studies of FVR-Net using ResNext-150 unless specifically noted.

Method
DistErr

(mm)
ImgSim
(NCC)

Correlation Runtime
(s)tX tY tZ aX aY aZ Mean

ResNext-50 4.34 0.72 0.69 0.76 0.94 0.95 -0.06 0.05 0.55 0.03
ResNext-101 3.35 0.85 0.66 0.68 0.87 0.88 0.10 -0.01 0.53 0.04
Ltrans 3.17 0.90 0.48 0.56 0.91 0.91 0.01 0.14 0.50 0.07
Lsim 4.86 0.61 0.01 0.05 0.03 -0.08 0.05 -0.06 0.00 0.07
EF 5.68 0.60 0.14 0.06 0.07 0.14 0.01 0.04 0.03 0.06
ULF 5.93 0.62 0.18 0.07 0.08 -0.16 0.08 -0.02 0.04 0.06
Ltrans + Lsim 2.73 0.92 0.69 0.88 0.96 0.96 0.17 0.08 0.62 0.07

slice’s corresponding corner points. The image similarity score (ImgSim) shows
the quality assessment of the registration results. We also report the correlation
coefficient between the groundtruth δθ and the estimated θ. Finally, the running
time denotes the average time cost for registering a single pair of images. The
average initialization error is 7.68 mm in the test set. As shown in Table 1, the it-
erative methods using MSE as the similarity metric can consistently outperform
those using NCC. On the other hand, using Powell as the optimizer, the dis-
tance error is significantly reduced, but the running time also increased rapidly.
By applying our best FVR-Net, a competitive performance (2.73mm) has been
achieved compared to the best iterative registration (2.85mm). Although there
is no significant difference in the distance error, our running time is more than
80 times faster than the traditional iterative registration. Benefitted from deep
CNN’s high computation efficiency, the proposed FVR-Net can perform TRUS
frame-to-volume registration in approximately real-time speed. Fig.3 (a) shows
the results of searching for consecutive frames within one volume. Given the
same input subvolume (specified by the same initialization frame), our FVR-
Net can search for different frames within this subvolume. The FVR-Net results
are similar to the groundtruth sampling (3rd) row.

Ablation Study To determine whether the superior result of our network at-
tributes to the novel (a) dual-branch balanced feature extraction and (b) aux-
iliary image similarity loss, we trained our FVR-Net with multiple settings, as
shown in Table 4.2. We tried different architectures of the localization net and
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Fig. 3. Sample results of frame-to-volume registration. The 1st row shows the frames
sampled using the initial transformation; the 2nd row includes the input frames to be
registered; the 3rd row is the target slice sampled from a 3D volume using the ground-
truth transformation; the 4th and 5th rows are the results produced by the baseline
registration method and our proposed FVR-Net.

found ResNext-150 produces the smallest distance error. By directly concate-
nating the 2D frame and 3D volume together as input, the early fusion (EF)
network produces meaningless results, indicating the network learns little in-
formation for the transformation parameters estimation. A similar phenomenon
happens to the unbalanced late fusion (ULF), where the frame’s feature maps
are still overwhelmed by the volume feature maps’ large size. Applying our
dual-branch balanced feature extraction, the resultant transformation param-
eters show a high correlation to the groundtruth. When the FVR-Net is trained
in an unsupervised way using Lsim alone, the results show little correlation to
the groundtruth. While combining two loss functions, the distance error drops
significantly from 3.17mm to 2.73mm, demonstrating the effectiveness of the
auxiliary image similarity loss’s effectiveness.

5 Conclusions

This paper has introduced a novel end-to-end TRUS frame-to-volume registra-
tion network which instantly register a single 2D TRUS frame with a recon-
structed 3D TRUS volume. The experimental results demonstrate our work’s
competitive performance and superior registration speed comparing to the con-
ventional iterative registration. The ablation study suggests that the dual-branch
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balanced feature extraction and auxiliary image similarity loss can significantly
reduce the registration error. Once combined with off-the-shelf 3D TRUS-MRI
registration methods [4, 6], the proposed FVR-Net would be able to bridge the
research gap in real-time 2D-TRUS and 3D-MRI fusion for guiding the prostate
biopsy. We will systematically study the entire workflow in our future work and
include more ablation studies for various experimental settings.
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