Skip to main content

RLP-Net: A Recursive Light Propagation Network for 3-D Virtual Refocusing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

High-speed optical 3-D fluorescence microscopy is an essential tool for capturing the rapid dynamics of biological systems such as cellular signaling and complex movements. Designing such an optical system is constrained by the inherent trade-off among resolution, speed, and noise which comes from the limited number of photons that can be collected. In this paper, we propose a recursive light propagation network (RLP-Net) that infers the 3-D volume from two adjacent 2-D wide-field fluorescence images via virtual refocusing. Specifically, we propose a recursive inference scheme in which the network progressively predicts the subsequent planes along the axial direction. This recursive inference scheme reflects that the law of physics for the light propagation remains spatially invariant and therefore a fixed function (i.e., a neural network) for a short distance light propagation can be recursively applied for a longer distance light propagation. Experimental results show that the proposed method can faithfully reconstruct the 3-D volume from two planes in terms of both quantitative measures and visual quality. The source code used in the paper is available at https://github.com/NICALab/rlpnet.

C. Shin and H. Ryu—Equal contributions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abrahamsson, S., et al.: Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 10, 60–63 (2013)

    Article  Google Scholar 

  2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48 (2009)

    Google Scholar 

  3. Bouchard, M.B., et al.: Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photonics 9(2), 113–119 (2015)

    Article  Google Scholar 

  4. Chen, Q., et al.: Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron 76(2), 297–308 (2012)

    Article  Google Scholar 

  5. Chen, T.-W., et al.: Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458), 295–300 (2013)

    Article  Google Scholar 

  6. Cong, L., et al.: Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6, e28158 (2017)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134. IEEE (2017)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations, pp. 1–15 (2015)

    Google Scholar 

  10. Mao, X., Shen, C., Yang, Y.-B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections, pp. 2810–2818 (2016)

    Google Scholar 

  11. Mechrez, R., Talmi, I., Shama, F., Zelnik-Manor, L.: Maintaining natural image statistics with the contextual loss. arXiv:1803.04626 (2018)

  12. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv:1411.1784 (2014)

  13. Ounkomol, C., Seshamani, S., Maleckar, M.M., Collman, F., Johnson, G.R.: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods \(\varvec {15}\), 917–920 (2018). https://doi.org/10.1038/s41592-018-0111-2

  14. Pawley, J.: Handbook of Biological Confocal Microscopy, 3rd edn. Springer, Boston (2006). https://doi.org/10.1007/978-0-387-45524-2

    Book  Google Scholar 

  15. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  16. Piatkevich, K.D., et al.: A robotic multidimensional directed evolution of proteins: development and application to fluorescent voltage reporters. Nat. Chem. Biol. \(\varvec {14}\), 352–360 (2017)

    Google Scholar 

  17. Prevedel, R., et al.: Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods \(\varvec {11}\), 727–730 (2014)

    Google Scholar 

  18. Schrödel, T., Prevedel, R., Aumayr, K., Zimmer, M., Vaziri, A.: Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10, 1013–1020 (2013). https://doi.org/10.1038/nmeth.2637

  19. Tian, L., et al.: Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods \(\varvec {6}\)(12), 875–881 (2009)

    Google Scholar 

  20. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  21. Wang, Z., et al.: Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning. Nat. Methods (2021). https://doi.org/10.1038/s41592-021-01058-x

  22. Weigert, M., Royer, L., Jug, F., Myers, G.: Isotropic reconstruction of 3D fluorescence microscopy images using convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 126–134. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_15

  23. Wu, Y., et al.: Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat. Methods \(\varvec {16}\), 1323–1331 (2019). https://doi.org/10.1038/s41592-019-0622-5

  24. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  25. Yoon, Y.-G., et al.: Sparse decomposition light-field microscopy for high speed imaging of neuronal activity. Optica \(\varvec {7}\), 1457–1468 (2020)

    Google Scholar 

  26. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation of Korea (2020R1C1C1009869) and the Korea Medical Device Development Fund grant funded by the Korea government (202011B21-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Gyu Yoon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 9724 KB)

Supplementary material 2 (pdf 1810 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shin, C., Ryu, H., Cho, ES., Yoon, YG. (2021). RLP-Net: A Recursive Light Propagation Network for 3-D Virtual Refocusing. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics