Skip to main content

Adaptive Squeeze-and-Shrink Image Denoising for Improving Deep Detection of Cerebral Microbleeds

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Deep learning for medical image analysis requires large quantities of high-quality imaging data for training purposes, which could be often less available due to existence of heavy noise in particular imaging modalities. This issue is especially obvious in cerebral microbleed (CMB) detection, since CMBs are more discernable on long echo time (TE) susceptibility weighted imaging (SWI) data, which are unfortunately much noisier than those with shorter TE. In this paper we present an effective unsupervised image denoising scheme with application to boosting the performance of deep learning based CMB detection. The proposed content-adaptive denoising technique uses the log-determinant of covariance matrices formed by highly correlated image contents retrieved from the input itself to implicitly and efficiently exploit sparsity in PCA domain. The numerical solution to the corresponding optimization problem comes down to an adaptive squeeze-and-shrink (ASAS) operation on the underlying PCA coefficients. Obviously, the ASAS denoising does not rely on any external dataset and could be better fit the input image data. Experiments on medical image datasets with synthetic Gaussian white noise demonstrate that the proposed ASAS scheme is highly competitive among state-of-the-art sparsity based approaches as well as deep learning based method. When applied to the deep learning based CMB detection on the real-world TE3 SWI dataset, the proposed ASAS denoising could improve the precision by 18.03%, sensitivity by 7.64%, and increase the correlation between counts of ground truth and automated detection by 19.87%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gouw, A.A., et al.: Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J. Neurol. Neurosurg. Psychiatry 82, 126–135 (2011)

    Article  Google Scholar 

  2. Shi, Y., Wardlaw, J.M.: Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc. Neurol. 1, 83–92 (2016)

    Article  Google Scholar 

  3. Osher, S., Burger, M., Goldfarb, D., et al.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, H., Xiong, R., Ma, S., Fan, X., Gao, W.: Non-local extension of total variation regularization for image restoration. In: IEEE International Symposium on Circuits and Systems, pp. 1102–1105 (2014)

    Google Scholar 

  5. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50, 2744–2756 (2002)

    Article  Google Scholar 

  7. Dabov, K., Foi, A., Katkovnik, V., et al.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  8. Liu, H., Zhang, J., Xiong, R.: CAS: correlation adaptive sparse modeling for image denoising. IEEE Trans. Comput. Imag. 7, 638–647 (2021)

    Google Scholar 

  9. Zhang, L., Dong, W., Zhang, D., et al.: Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn. 43, 1531–1549 (2010)

    Article  MATH  Google Scholar 

  10. Dong, W., Li, X., Zhang, L., Shi, G.: Sparsity-based image denoising via dictionary learning and structural clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 457–464 (2011)

    Google Scholar 

  11. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22, 700–711 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, H., Xiong, R., Liu, D., Wu, F., Gao, W.: Low rank regularization exploiting intra and inter patch correlation for image denoising. In: IEEE Visual Communications and Image Processing, St. Petersburg, USA (2017)

    Google Scholar 

  13. Zhang, Y., et al.: Image denoising via structure-constrained low-rank approximation. Neural Comput. Appl. 32(16), 12575–12590 (2020). https://doi.org/10.1007/s00521-020-04717-w

    Article  Google Scholar 

  14. Wang, S., Zhang, L., Liang, Y.: Nonlocal spectral prior model for low-level vision. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 231–244. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37431-9_18

    Chapter  Google Scholar 

  15. Liu, H., Xiong, R., Zhang, X., Zhang, Y., Ma, S., Gao, W.: Nonlocal gradient sparsity regularization for image restoration. IEEE Trans. Circuits Syst. Video Technol. 27, 1909–1921 (2017)

    Article  Google Scholar 

  16. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mou, C., Zhang, J., Fan, X., Liu, H., Wang, R.: COLA-Net: collaborative attention network for image restoration. IEEE Trans. Multimedia (2021)

    Google Scholar 

  18. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  19. Mohan, K., Fazel, M.: Iterative reweighted algorithms for matrix rank minimization. J. Mach. Learn. Res. 13, 3441–3473 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Wipf, D.P., Rao, B.D., Nagarajan, S.: Latent variable Bayesian models for promoting sparsity. IEEE Trans. Inf. Theory 57, 6236–6255 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, H., Rashid, T., Habes, M.: Cerebral microbleed detection via Fourier descriptor with dual domain distribution modeling. In: IEEE International Symposium on Biomedical Imaging Workshops, pp. 1–4 (2020)

    Google Scholar 

  22. Krizhevsky, A., Sutskever, I., et al.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  25. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  26. Rashid, T., Abdulkadir, A., et al.: DEEPMIR: a deep neural network for differential detection of cerebral Microbleeds and IRon deposits in MRI. Scientific Reports (2021)

    Google Scholar 

  27. Wang, C.-W., Huang, C.-T., Lee, J.-H., Li, C.-H., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)

    Article  Google Scholar 

  28. Suckling, J., et al.: The mammographic image analysis society digital mammogram database. Excerpta Med. Int. Congr. Ser. 1069, 375–386 (1994)

    Google Scholar 

  29. Coupé, P., Manjón, J.V., Gedamu, E., Arnold, D., Robles, M., Collins, D.L.: An object-based method for Rician noise estimation in MR images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 601–608 (2009)

    Google Scholar 

  30. Haacke, E.M., Xu, Y., Cheng, Y.C.N., Reichenbach, J.R.: Susceptibility weighted imaging (SWI). Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 52, 612–618 (2004)

    Google Scholar 

  31. Bild, D.E., Bluemke, D.A., Burke, G.L., et al.: Multi-ethnic study of atherosclerosis: objectives and design. Am. J. Epidemiol. 156, 871–881 (2002)

    Article  Google Scholar 

  32. Olson, J.L., Bild, D.E., Kronmal, R.A., Burke, G.L.: Legacy of MESA. Glob. Heart 11, 269–274 (2016)

    Article  Google Scholar 

  33. Heckbert, S.R., Austin, T.R., Jensen, P.N., Floyd, J.S., Psaty, B.M., et al.: Yield and consistency of arrhythmia detection with patch electrocardiographic monitoring: the multi-ethnic study of atherosclerosis. J. Electrocardiol. 51, 997–1002 (2018)

    Article  Google Scholar 

  34. Boespflug, E.L., Schwartz, D.L., Lahna, D., et al.: MR imaging–based multimodal autoidentification of perivascular spaces (mMAPS): automated morphologic segmentation of enlarged perivascular spaces at clinical field strength. Radiology 286, 632–642 (2018)

    Article  Google Scholar 

  35. Dubost, F., Yilmaz, P., Adams, H., et al.: Enlarged perivascular spaces in brain MRI: automated quantification in four regions. Neuroimage 185, 534–544 (2019)

    Article  Google Scholar 

  36. Ballerini, L., et al.: Perivascular spaces segmentation in brain MRI using optimal 3D filtering. Sci. Rep. 8, 1–11 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This MESA research was supported by contracts 75N92020D00001, HHSN268201500 003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168 and N01-HC-95169 and grant HL127659 from the National Heart, Lung, and Blood Institute, and by grants UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420 from the National Center for Advancing Translational Sciences (NCATS). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank the other investigators, the staff, and the participants of the MESA study for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangfan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H. et al. (2021). Adaptive Squeeze-and-Shrink Image Denoising for Improving Deep Detection of Cerebral Microbleeds. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics