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Abstract. Recently, both supervised and unsupervised deep learning
methods have been widely applied on the CT metal artifact reduction
(MAR) task. Supervised methods such as Dual Domain Network (Du-
DoNet) work well on simulation data; however, their performance on
clinical data is limited due to domain gap. Unsupervised methods are
more generalized, but do not eliminate artifacts completely through the
sole processing on the image domain. To combine the advantages of
both MAR methods, we propose an unpaired dual-domain network (U-
DuDoNet) trained using unpaired data. Unlike the artifact disentangle-
ment network (ADN) that utilizes multiple encoders and decoders for
disentangling content from artifact, our U-DuDoNet directly models the
artifact generation process through additions in both sinogram and im-
age domains, which is theoretically justified by an additive property as-
sociated with metal artifact. Our design includes a self-learned sinogram
prior net, which provides guidance for restoring the information in the
sinogram domain, and cyclic constraints for artifact reduction and ad-
dition on unpaired data. Extensive experiments on simulation data and
clinical images demonstrate that our novel framework outperforms the
state-of-the-art unpaired approaches.

Keywords: Metal Artifact Reduction · Dual-domain Learning · Un-
paired Learning.

1 Introduction

Computed tomography (CT) reveals the underlying anatomical structure within
the human body. However, when a metallic object is present, metal artifacts
appear in the image because of beam hardening, scatters, photon starvation,
etc. [2,3,19], degrading the image quality and limiting its diagnostic value.
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With the success of deep learning in medical image processing [27,28], deep
learning has been used for metal artifact reduction (MAR). Single-domain net-
works [5,21,25] have been proposed to address MAR with success. Lin et al. are
the first to introduce dual-domain network (DuDoNet) to reduce metal artifacts
in the sinogram and image domain jointly and DuDoNet shows further advan-
tages over single-domain networks and traditional approaches [4,10,12,13,19].
Following this work, variants of the dual-domain architecture [18,22,24] have
been designed. However, all the above-mentioned networks are supervised and
rely on paired clean and metal-affected images. Since such clinical data is hard
to acquire, simulation data are widely used in practice. Thus, supervised models
may over-fit to simulation and do not generalize well to real clinical data.

Learning from unpaired, real data is thus of interest. To this, Liao et al. pro-
pose ADN [14,16], which separates content and artifact in the latent spaces with
multiple encoders and decoders and induces unsupervised learning via various
forms of image generation and specialized loss functions. An artifact consistency
loss is introduced to retain anatomical preciseness during MAR. The loss is
based on the assumption that metal artifacts are additive. Later on, Zhao et
al. [26] design a simple reused convolutional network (RCN) of encoders and de-
coders to recurrently generating both artifact and non-artifact images. RCN also
adopts the additive metal artifacts assumption. However, neither of the works
has theoretically proved the property. Moreover, without the aid of processing in
sinogram domain, both methods have limited effect on removing strong metal
artifacts, such as the dark and bright bands around metal objects.

In this work, we analytically derive the additive property associated with
metal artifacts and propose an unpaired dual-domain MAR network (U-DuDoNet).
Without using complicated encoders and decoders, our network directly esti-
mates the additive component of metal artifacts, jointly using two U-Nets on two
domains: a sinogram-based estimation net (S-Net) and an image-based estima-
tion net (I-Net). S-Net first restores sinogram data and I-net removes additional
streaky artifacts. Unpaired learning is achieved with cyclic artifact reduction
and synthesis processes. Strong metal artifacts can be reduced in the sinogram
domain with prior knowledge. Specifically, sinogram enhancement is guided by a
self-learned sinogram completion network (P-Net) with clean images. Both sim-
ulation and clinical data show our method outperforms competing unsupervised
approaches and has better generalizability than supervised approaches.

2 Additive Property for Metal Artifacts

Here, we prove metal artifacts are inherently additive up to mild assumptions.
The CT image intensity represents the attenuation coefficient. Let Xc(E) be a
normal attenuation coefficient image at energy level E. In a polychromatic x-ray
system, the ideal projection data (sinogram) Sc can be expressed as,

Sc = −ln
∫
η(E)e−P(X

c(E))dE, (1)
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where P and η(E) denote forward projection (FP) operator and fractional energy
at E. Comparing with metal, the attenuation coefficient of normal body tissue is
almost constant with respect to E, thus we have Xc = Xc(E) and Sc = P(Xc).
Without metal, filtered back projection (FBP) operator P∗ provides a clean CT
image Ic as a good estimation of Xc, Ic = P∗(Sc) = P∗(P(Xc)).

Metal artifacts appear mainly because of beam hardening. An attenuation
coefficient image with metal Xa(E) can be split into a relatively constant image
without metal Xac and a metal-only image Xm(E) varies rapidly against E,
Xa(E) = Xac+Xm(E). Often Xm(E) is locally constrained. The contaminated
sinogram Sa can be given as,

Sa = −ln
∫
η(E)e−P(X

a(E))dE = P(Xac)− ln
∫
η(E)e−P(X

m(E))dE. (2)

And the reconstructed metal-affected CT image Ia is,

Ia = P∗(P(Xac))− P∗(ln
∫
η(E)e−P(X

m(E))dE) = Iac + F (Xm(E)). (3)

Here, P∗(P(Xac)) is the MAR image Iac and the second term introduces streaky
and band artifacts, which is a function ofXm(E). Since metal artifacts are caused
only by Xm(E), we can create a plausible artifact-affected CT Ica by adding
the artifact term to an arbitrary, clean CT image: Ica = Ic + F (Xm(E)).

3 Methodology

Fig. 1b shows the proposed cyclical MAR framework. In Phase I, our frame-
work first estimates artifact components aS and aI through U-DuDoNet from
Ia, see Fig. 1a. In Phase II, based on the additive metal artifact property (Sec-
tion 2), plausible clean image Iac and metal-affected image Ica could be gener-
ated, Iac = Ia − aS − aI , Ica = Ic + aS + aI . Then, the artifact components
should be removable from Ica by U-DuDoNet, resulting in a′S and a′I . In the end,
reconstructed images Iaca, Icac can be obtained through subtracting or adding
the artifact components, Iaca = Iac + a′S + a′I , Icac = Ica − a′S − a′I .

3.1 Network Architecture

Artifact component estimation in sinogram domain. Strong metal ar-
tifacts like dark and bright bands can not be suppressed completely by image
domain processing, while metal artifacts are inherently local in the sinogram
domain. Thus, we aim to reduce metal shadows by sinogram enhancement.

First, we acquire metal corrupted sinograms (Sa and Sca) by forward project-
ing Ia and Ica: Sa = P(Ia), Sca = P(Ica). Then, we use a pre-trained prior net
(P-Net) to guide the sinogram restoration process. P-Net is an inpainting net φP
that treats the metal-affected area in sinogram as missing and aims to complete
it, i.e., Sap = φP (Sa,Mt). Here Mt denotes a binary metal trace, Mt = δ(P(M)),
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Fig. 1: (a) Unpaired dual-domain network (U-DuDoNet). The input is either a
real artifact-affected image Ia, or a synthetic artifact-affected image Ica. (b) The
proposed cyclical MAR framework. The notations in Phase I and Phase II are
marked with black and brown, respectively.

where M is a metal mask and δ(·) is a binary indicator function. We adopt a
mask pyramid U-Net as φP from [15,17]. To train φP , we artificially inject masks
into clean sinograms.

Then, we use a sinogram network (S-Net) to predict enhanced sinogram Sase,
Scase from Sa, Sca, respectively.

Sase = φS(Sa,P(M))�(1−Mt)+Sa, Scase = φS(Sca,P(M))�(1−Mt)+Sca, (4)

where φS represents a U-Net[20] of depth 2. Residual learning [8] is applied to
ease the training process, and singoram prediction is limited to the Mt region.
To prevent information loss from discrete operators, we obtain the sinogram
artifact component as a difference image between reconstructed input image
and reconstructed enhanced sinogram,

aS = P∗(Sa)− P∗(Sase), a′S = P∗(Sca)− P∗(Scase ). (5)

Artifact component estimation in image domain. As sinogram data in-
consistency leads to secondary artifacts in the whole image, we further use an
image domain network (I-Net) to reduce newly introduced and other streaky ar-
tifacts. Let φI denote I-Net, which is a 5-depth U-Net. First, sinogram enhanced
images are obtained by subtracting sinogram artifact component from corrupted
images, Iase = Ia − aS , Icase = Ica − a′S . Then, I-Net takes a sinogram enhanced
image, and outputs an artifact component in image domain (aI or a′I),

aI = φI(I
a
se), a

′
I = φI(I

ca
se ). (6)

3.2 Dual-domain Cyclic Learning

To obviate the need of paired data, we use cycle loss and artifact consistency loss
as cyclic MAR constraints and adopt adversarial loss. Besides, we take advantage
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of prior knowledge to guide the data restoration in Phase I and apply dual-
domain loss to encourage the data fidelity in Phase II.
Cycle loss. By cyclic artifact reduction and synthesis, the original and recon-
structed images should be identical. We use L1 loss to minimize the distance,

Lcycle = ||Ia − Iaca||1 + ||Ic − Icac||1. (7)

Artifact consistency loss. To ensure the artifacts components added to Ic

could be removed completely when applying the same network on Ica, the artifact
components estimated from Ia and Ica should be the same,

Lart = ||aS − a′S ||1 + ||aI − a′I ||1. (8)

Adversarial loss. The synthetic images, Ica and Iac, should be indistinguish-
able to input images. Since paired groundtruth is not available, we adopt Patch-
GAN [9] as discriminators Da and Dc to apply adversarial learning. Since metal
affected images always contain streaks, we add gradient image generated by So-
bel operator 5 as an additional channel of the input of Da and Dc to achieve
better performance. The loss would be written as,

Ladv = E[logDa(Ia,5Ia)] + E[1− logDa(Ica,5Ica)]

+ E[logDc(Ic,5Ic)] + E[1− logDc(Iac,5Iac)].
(9)

Fedility loss. To learning artifact reduction from generated Ica, we minimize
the distances between Scase and Sc, Icase and Ic,

Lfed = ||Scase − Sc||1 + ||Icase − Ic||1. (10)

Prior loss. Inspried by DuDoNet [17], sinogram inpainting network provides
smoothed estimation of sinogram data within Mt. Thus, we use a Gaussian blur
operation Gσs

with a scale of σs and L2 loss to minimize the distance between
blurred prior and enhanced sinogram. Meanwhile, inspired by [11], blurred sino-
gram enhanced image also serves as an good estimation of blurred MAR image.
Also, we minimize the distance between low-pass versions of sinogram enhanced
and MAR images with a Gaussian blur operation Gσi

to stabilize the unsuper-
vised training. The prior loss could be formulated as,

Lprior = ||Gσs
(Sap )− Gσs

(Sase)||2 + ||Gσi
(Iase)− Gσi

(Iac)||2. (11)

The overall objective function is the weighted sum of all the above losses, we
empirically set the weight of Ladv to 1, and the weights of Lprior, Lart to 10,
and the weights of the other losses to 100. We set σs to 1 and σi to 3 in Lprior.

4 Experiment

4.1 Experimental Setup

Datasets. Following [14], we evaluate our model on both simulation and clinical
data. For simulation data, we generate images with metal artifacts using the
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Method
Sinogram domain CT Image domain CT

Running time (ms)
PSNR(dB)/SSIM PSNR(dB)/SSIM

Metal n/a n/a 27.23/0.692 n/a

Supervised

DuDoNet [17] 32.20/0.755 36.95/0.927 60.38
DuDoNet++ [18] 32.20/0.751 37.65/0.953 39.77
DSCIP [24] 29.22/0.624 30.06/0.790 62.01
DAN-Net [22] 32.48/0.752 39.73/0.944 63.75

Unsupervised
RCN [26] n/a 32.98/0.918 38.18
ADN [14] n/a 33.81/0.926 37.66
U-DuDoNet (ours) 30.47/0.722 34.54/0.934 63.59

Table 1: Quantitative comparison of different SOTA methods.

method in [25]. From DeepLesion [23], we randomly choose 3,984 clean images
combining with 90 metal masks for training and additional 200 clean images
combining with 10 metal masks for testing. For unsupervised training, we spilt
3,984 images into two groups and randomly select one metal corrupted image
and one clean image. For clinical data, we select 6,146 images with artifacts and
21,002 clean images for training from SpineWeb [6,7]. Additional 124 images
with metal are used for testing.
Implementation and metrics. We implement our model with the PyTorch
framework and differential FP and FBP operators with ODL library [1]. We
train the model for 50 epochs using an Adam optimizer with a learning rate of
1 × 10−4 and a batch size of 2. For clinical data, we train another model using
unpaired images for 20 epochs and the metal mask is segmented with a threshold
of 2,500 HU. We use peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) to evaluate the corrected image.
Baselines. We compare U-DuDoNet with multiple state-of-the-art (SOTA) MAR
methods. DuDoNet [17], DuDoNet++ [18], DSCIP [24] and DAN-Net [22] are
supervised methods which are trained with simulation data and tested on both
simulation and clinical data. DuDoNet, DuDoNet++ and DAN-Net share the
same SE-IE architecture with an image enhancement (IE) following sinogram
enhancement (SE) network, while DSCIP adopts an IE-SE architecture that pre-
dicts a prior image first then outputs the sinogram enhanced image. RCN [26]
and ADN [14] are unsupervised and can be trained and tested on each dataset.

4.2 Comparison on Simulated and Real Data

Simulated Data. From Table 1, we observe that DAN-Net achieves the high-
est PSNR and DuDoNet++ achieves the highest SSIM. All methods with SE-
IE architecture outperform DSCIP. The reason is image enhancement network
helps recover details and bridge the gap between real images and reconstructed
images. Among all the unsupervised methods, our model attains the best perfor-
mance, with an improvement of 0.73 dB in PSNR compared with ADN. Besides,
our model runs as fast as the supervised dual-domain models but slower than
image-domain unsupervised models. Figure 2 shows the visual comparisons of
a case. The zoomed subfigure shows that metallic implants induce dark bands
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Corrupted CT DuDoNet DuDoNet++ DSCIP DAN-Net

Groundtruth RCN ADN Ours

Fig. 2: Visual comparisons with the SOTA methods on simulation data. The
display window is [-200, 600] HU and red pixels stand for metal implants.

PSNR(dB)/SSIM M1 (Image Domain) M2 (Dual-domain) M3 (Dual-domain + prior)

Iase n/a 29.99/0.730 30.47/0.730
Ica 32.97/0.927 33.30/0.930 34.54/0.934

Table 2: Quantitative comparison of different variants of our model.

in the region between two implants or along the direction of dense metal pixels.
Learning from linearly interpolated (LI) sinogram, DuDoNet removes the dark
bands and streaky artifacts completely but smooths out the details around the
metal. DuDoNet++ and DSCIP could not remove the dark bands completely
as they learn from the corrupted images. DAN-Net contains fewer streaks than
DuDoNet++ and DSCIP since it recovers from a blended sinogram of LI and
metal-affected data. Among all the unsupervised methods, only our model re-
covers the bony structure in dark bands and contains least streaks.

Real Data. Fig. 3 shows a clinical CT image with two rods on each side of the
spinous process of a vertebra. The implants induce severe artifacts, which make
some bone part invisible. DuDoNet recovers the bone but introduces strong
secondary artifacts. DuDoNet++, DSCIP, and DAN-Net do not generalize to
clinical data as the dark band remains in the MAR images. Besides, all the su-
pervised methods output smoothed images as training images from DeepLesion
might be reconstructed by a soft tissue kernel. The MAR images of the unsu-
pervised method could retain the sharpness of the original image. But, RCN
and ADN do not reduce the artifacts completely or retain the integrity of bone
structures near the metal as these structures might be confused with artifacts.
Our model removes the dark band while retaining the structures around the
rods. More visual comparisons are in the supplemental material.
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Corrupted CT DuDoNet DuDoNet++ DSCIP

DAN-Net RCN ADN Ours

Fig. 3: Visual comparisons with the SOTA methods on clinical data.

Corrupted CT Groundtruth M1 M2 M3(full)

Fig. 4: Visual comparisons of different variants of our model.

4.3 Ablation Study

We evaluate the effectiveness of different components in our full model. Table 2
shows the configuration of our ablation models. Briefly, M1 refers to the model
with I-Net and Lcycle, Ladv, M2 refers to M1 plus S-Net, Lgt, Lart, and M3
refers to M2 plus P-Net, Lprior. As shown in Table 2 and Fig. 4, M1 has the
capability of MAR in image domain, but strong artifacts like dark bands and
streaks remain in the output image. Dual-domain learning increases the PSNR
by 0.33 dB, and the dark bands are partial removed in the corrected image, but
streaks show up as sinogram enhancement might be not perfect. With the aid
of prior knowledge, M3 could remove the dark bands completely and further
suppresses the secondary artifacts.

5 Conclusion

In this paper, we present an unpaired dual-domain network (U-DuDoNet) that
exploits the additive property of artifact modeling for metal artifact reduction.
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In particular, we first remove the strong metal artifacts in sinogram domain and
then suppress the streaks in image domain. Unsupervised learning is achieved
via cyclic additive artifact modeling, i.e. we try to remove the same artifact after
inducing artifact in an unpaired clean image. We also apply prior knowledge to
guide data restoration. Qualitative evaluations and visual comparisons demon-
strate that our model yields better MAR performance than competing methods.
Moreover, our model shows great potential when applied to clinical images.
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