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Abstract. During pregnancy, ultrasound examination in the second
trimester can assess fetal size according to standardized charts. To achieve
a reproducible and accurate measurement, a sonographer needs to iden-
tify three standard 2D planes of the fetal anatomy (head, abdomen,
femur) and manually mark the key anatomical landmarks on the image
for accurate biometry and fetal weight estimation. This can be a time-
consuming operator-dependent task, especially for a trainee sonographer.
Computer-assisted techniques can help in automating the fetal biome-
try computation process. In this paper, we present a unified automated
framework for estimating all measurements needed for the fetal weight
assessment. The proposed framework semantically segments the key fe-
tal anatomies using state-of-the-art segmentation models, followed by
region fitting and scale recovery for the biometry estimation. We present
an ablation study of segmentation algorithms to show their robustness
through 4-fold cross-validation on a dataset of 349 ultrasound standard
plane images from 42 pregnancies. Moreover, we show that the network
with the best segmentation performance tends to be more accurate for
biometry estimation. Furthermore, we demonstrate that the error be-
tween clinically measured and predicted fetal biometry is lower than the
permissible error during routine clinical measurements.

Keywords: Fetal biometry estimation · Fetal ultrasound · Fetus anatomy
segmentation · computer-assisted diagnosis.

1 Introduction

There is little global consensus on how to train, assess and evaluate skills in pre-
natal second trimester ultrasound (US) screening. Recommended assessment and
quality control metrics vary across countries and institutions [5]. Despite this,
standardized US planes and metrics to assess fetal size are well established [20].
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Fig. 1: Fetal biometry from transventricular plane in the head (left), transab-
dominal plane in the abdomen (middle) and femur plane (right).

In particular, fetal weight estimation is routinely used to assess fetal well-being,
both in terms of its absolute value and its growth trajectory during pregnancy.
Fetal wellbeing is considered by obstetricians for scheduling birth and by neona-
tologists when counselling parents on likely outcomes for their baby. There are
three key structures and corresponding anatomical planes which are used for
the estimation of fetal weight (Fig. 1). These are the transventricular plane to
measure the head, the transabdominal plane to measure the abdomen and the
femur length plane to measure the leg skeletal size. The acquisition of these
standard planes is subject to intraoperator and interoperator variabilities [22]
which introduces some degree of uncertainty in the clinically obtained weight
measurements and consequently requires a degree of caution when clinicians are
interpreting fetal growth reports. Sonography expertise has a significant impact
on minimizing variability of image quality and fetal biometry [5]. Consequently,
training and competence assessment are of great importance to ensure effective,
reproducible and safe clinical practice. Automating fetal biometry on the stan-
dardized planes can help in minimizing the variability, specially in the case of
less experienced sonographers and may also serve as expert for trainees.

There is extensive work on segmentation of anatomical structures in standard
US planes, specifically those concerning second and third trimester screening
[19]. These techniques can support automated fetal biometry, including mea-
surements on the head [24,13,16,23,15,4], femur [15,12], and abdominal section
[14]. These methods, however, rely on prior knowledge of which measurement
to perform on a given image. A fully automated biometry system should both
identify which standard plane is being imaged and whether it is of sufficient
quality to perform the relevant measurements. Automatic image quality assess-
ment has been investigated, including adequate magnification, symmetry and
the visibility of relevant anatomical structures within the image [17,15]. Such
methods together with classification of standard planes [1] can be used to ex-
tract appropriate planes for fetal biometry from US video or image collections [9].
Alternative approaches involve obtaining standard planes from 3D US volumes
[10], in which the extracted planes approach those of an experienced sonographer
but results are so far limited to the fetal head measurements. Standard plane
classification has also been further developed to provide active guidance during
freehand operation [6].
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In this paper, we propose performing all the relevant measurements for fe-
tal weight estimation within a unified automated system, which is our main
contribution. The proposed AutoFB framework involves classifying the three
standard planes and segmenting the head, abdomen and femur. This is followed
by the extraction of the following measurements: biparietal diameter (BPD),
occipito-frontal diameter (OFD), head circumference (HC), transverse abdomi-
nal diameter (TAD), anterior-posterior abdominal diameter (APAD), abdominal
circumference (AC), and femur length (FL). We achieve this by training a multi-
class segmentation neural network that automatically identifies and segments the
relevant anatomy structures within any of the three standard planes. The corre-
sponding biometry is then extracted by applying scale recovery and using ellipse
fitting (head or abdomen) and bounding box fitting (femur). To the best of our
knowledge, AutoFB is the first framework to automate fetal biometry estimation
from all three standard planes. We demonstrate the robustness of AutoFB by
experimenting using real clinical US data and validate both inferred segmenta-
tion and estimated biometry. The clinical data used for the validation contains
346 2D US planes from 42 pregnancies. AutoFB is of high clinical relevance as it
will enable automating biometry, a task currently affected by high inter-operator
variability [5] due to manual selection and measurement of the relevant US plane.

2 Fetal Biometry

To clinically measure fetal size and weight during a fetal US, the sonographer
navigates the US probe to localize a view of each of the three standard planes.
While this task is subject to operator variability, there are established guidelines
on which features should be visible within each standard plane [2]. They must
then lock the display and manually place calipers on key landmarks from which
biometric measurements are extracted. The BPD and OFD measurements are
required for the HC measurement on the transventricular plane (Fig. 1(left)).
The TAD and APAD are required for the AC measurement on the transabdom-
inal plane (Fig. 1(middle)). HC and AC are then computed using, π(d1 + d2)/2,
where d1 and d2 are the BPD and OFD in the case of head and TAD and APAD
in the case of abdomen measurements. Alternatively, an ellipse fitting function
is available in some US machines and can be used for head and abdominal mea-
surements, however, its usage largely depends on operator choice or established
practice within a specific clinical site. This feature is not routinely used in the
context of data acquired and presented within this work. To measure the femur
length (FL), the extreme lateral edges including both of the epiphyses must be
visualized and measured along the long axis of the femur (Fig. 1(right)).

3 Methodology

An overview of the proposed framework is presented in Fig. 2. The framework
jointly performs the 3-plane detection and anatomy segmentation by training
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Fig. 2: Overview of the AutoFB framework. Given a US standard plane, AutoFB
performs multi-class segmentation for plane detection and anatomy segmenta-
tion, followed by shape fitting and scale recovery for biometry estimation.

state-of-the-art segmentation models for identifying the head, abdomen and fe-
mur anatomies and selecting the best performing architecture (Sec. 3.1). This
is followed by shape fitting on the segmented regions, automated image scale
retrieval and biometry estimation in millimetres units (Sec. 3.2).

3.1 Multi-class Image Segmentation

In order to build a unified system, we define our problem as semantic segmen-
tation between 4 specific classes: head, abdomen, femur, and background. With
groundtruth data, each standard plane will only contain background and one of
the other 3 classes. We experimented with two state-of-the-art image segmenta-
tion models, namely, U-Net [18] and Deeplabv3+ [3]. U-Net can be regarded as
the most commonly used architecture for biomedical image segmentation and is
recommended when the training data is limited. Deeplabv3+ has achieved state-
of-the art performance on large-scale semantic segmentation datasets (PASCAL
VOC 2012). Both U-Net and Deeplabv3+ are encoder-decoder networks, where
U-Net is a special case in which the decoder component is connected with the en-
coder through skip connections and is not decoupled from the encoder. We briefly
introduce these architectures and refer the reader to [18,3] for specific details.

U-Net is a type of fully convolutional network which consists of a contrac-
tion path and an expansion path. The contraction path can be a pretrained
encoder which captures the context while limiting the feature map size. The ex-
pansion path is a symmetric decoder network which also performs up-sampling
to recover the segmentation map size. The encoder and decoder paths are con-
nected through skip connections for sharing localization information. We used
the ResNet50 [11] as the encoder architecture for U-Net. We also experimented
with Mobilenetv2 [21] to have a fair comparison of the two segmentation archi-
tectures under analysis. Deeplabv3+ [3] uses several parallel atrous convolutions
(also known as dilated convolutions) with different rates to capture the con-
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textual information at multiple scales without losing image resolution. This ap-
proach is referred to as Atrous Spatial Pyramid Pooling. Moreover, Deeplabv3+
recovers the detailed object boundaries through a simple yet effective decoder
module [3]. We used MobileNetv2 [21] instead of Xception model (that was used
in [3]) as the backbone for DeeplabV3+ as MobileNetv2 backbone is both light-
weight and effective.

We use cross entropy (CE) as loss function. From Table 1, we can observe that
the data is highly imbalanced, with the femur class having much fewer samples
compared to head, abdomen and background classes due to its comparatively
small segmentation area. To handle this issue, we also use weighted CE (wCE)
where given the total number of pixels per class, [ci]

4
i , weight wi for the ith class

is given by, wi =
max([ci]

4
i )

ci
. The obtained results are discussed in Sec. 5.

3.2 Fetal Biometry Estimation

Different standard planes require different biometry measurements, and therefore
the first step is to detect and localize the segmented region. This is defined as
the largest segmented area predicted by the networks described in the previous
section. We later show experimentally that this strategy correctly identifies all
planes in our test data. It is known a priori that the head and abdomen are
elliptical while the femur is oblong (Fig. 1). Thus, ellipse fitting is performed
on the segmented head and abdomen masks through shape contour extraction
and applying direct least square to fit an ellipse [8], where the major and minor
axes of the fitted ellipse represent BPD and OFD for the head and TAD and
APAD for the abdomen, respectively. These are in turn used to calculate the
circumference of the fitted ellipses, providing HC and AC measurements. On
the femur plane, a horizontal bounding box with zero orientation is fitted on
the segmented mask, where the length of its diagonal gives the FL estimate. A
femur is not necessarily aligned to the horizontal/vertical axis, hence the use of
bounding box diagonal as FL always holds. Finally, lengths in pixels are scaled to
millimetres to obtain results that are directly comparable to clinically measured
biometry.

While the metric scale of the US images (in px/mm) is usually trivial to
obtain during operation, the automatic extraction of this parameter from retro-
spectively acquired data proved useful to fully automate the hundreds of mea-
surements obtained in this work. Obtaining US scale is always system-dependent
because it must be extracted either from the visual interface of the US machine
or from the raw data, which requires access to a proprietary API. We use visual
interface for scale recovery since we did not have access to the raw data. To obtain
the scale, we exploit the consistent interface of the US machine used to acquire
our dataset (GE Voluson), namely the caliper visible on the left-hand side of
the US images. The ruler markers are detected with simple template matching
and their smallest interval (can be either 5mm or 10mm) is determined from the
relative size of the markers. The same template matching approach is easy to
deploy on systems other than GE Voluson since all medical grade US machines
have a similar ruler available.
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Table 1: Total number of sample in each segmentation class and in each cross-
validation fold and average pixels per class per frames.

All images Fold 1 Fold 2 Fold 3 Fold 4 Avg. pixels per class
Total subjects 42 10 9 12 11 per frame

Total Images 346 87 86 89 84 Background 816239

Head 135 26 44 29 36 Head 74127

Abdomen 103 32 22 26 23 Abdomen 44691

Femur 108 29 20 34 25 Femur 3833

4 Dataset and Experimental Setup

The data collection process has been reviewed and approved by the local research
ethics committee under the title; ”Fetal US and fetal monitoring technologies to
improve prenatal diagnosis and therapy for fetal abnormality and maternal and
fetal perinatal outcome”, IRAS ID 230125. Patients attending University College
London Hospital for US examination were enrolled and pseudo-anonomyzed by
the clinical research staff. Each patient gave written consent. For the purpose
of anonymizing, transferring and storing data a customized version of XNAT
1.6 was used. The complete image library from each US was transferred to the
research database. The hospital protocol undertakes US screening in accordance
with a National Fetal Anomaly Screening Program 1. Each saved image repre-
sents an image of diagnostic quality. The US images saved by the operator were
considered to be the optimal image for that scan given the limitations of fetal
lie and stage of gestation. The measurement calipers were applied by the US op-
erator and in most cases, the image with and without the measurement calipers
were saved. A subset of images relevant to fetal biometry were extracted from
the database by a clinical research fellow. A total of 346 images were included
from 42 pregnancies. Each image in the set of data was classified as AC, HC
or FL. The VIA annotation tool [7] was used to manually annotate the head,
abdomen or femur within each image for the segmentation task. The obtained
fully anonymized standard US plane images have large intra-class variability. For
example, in some cases the femur is well aligned to the horizontal plane while
in other cases the angle of sonnation is wider and the level of magnification is
less. Although operators followed a standard protocol to capture a good qual-
ity image including all necessary anatomical details, some images have relatively
poor contrast and dark patches. These are secondary to the technical limitations
of US and maternal body habitus. Often unavoidable, the heterogeneity of the
data set introduces challenges for the segmentation task.

The acquired data from 42 fetuses (346 US images) is divided into 4 folds,
used for testing the robustness of the segmentation networks, such that each
fold contains at least 80 images and all US images originating from a single fetus
are only included in a particular fold. Hence, the data in a fold is unseen for
all other folds (as mentioned in Table 1). Mean Intersection over Union (mIoU)

1https://tinyurl.com/NHSFetalAnomalyScreeningHB
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Table 2: Four-fold cross-validation results showing comparison of Deeplabv3+
and UNet having different configurations. Mean and standard deviation of mIoU
across all folds is reported. Key: BG- background; H - head; A - abdomen; F -
femur; CE - cross entropy; wCE - weighted cross entropy; MNv2 - Mobilenetv2.
Method mIoU mIoU-BG mIoU-H mIoU-A mIoU-F

Deeplabv3+ (MNv2-CE) 0.87±0.02 0.95±0.02 0.93±0.02 0.89±0.03 0.61±0.03

Deeplabv3+ (MNv2-wCE) 0.88±0.01 0.95±0.01 0.93±0.02 0.89±0.02 0.61±0.02

UNet (MNv2-CE) 0.82 ± 0.05 0.93 ± 0.03 0.89 ± 0.05 0.85 ± 0.05 0.56 ± 0.03

UNet (MNv2-wCE) 0.86 ± 0.01 0.94 ± 0.01 0.91 ± 0.02 0.86 ± 0.02 0.58 ± 0.01

UNet (Resnet-CE) 0.75 ± 0.06 0.88 ± 0.05 0.84 ± 0.07 0.77 ± 0.05 0.53 ± 0.03

UNet (Resnet-wCE) 0.78 ± 0.04 0.87 ± 0.03 0.83 ± 0.04 0.75 ± 0.06 0.53 ± 0.02

is used for evaluating the segmentation models, and absolute error between the
clinically measured and automatically predicted fetal biometry is used for evalu-
ating the proposed AutoFB. All images are of varying sizes (resolution) as they
were cropped to remove any identifiable information. Therefore, we resized all
images to 1024 × 1024 pixel resolution before model training. Data augmenta-
tion is applied by introducing random scale, rotation, shift, flipping, brightness
and contrast changes before obtaining an image crop of size 512 × 512 pixel
at a random location which is used as the input for training the segmentation
network. Data augmentation helped in avoiding model over-fitting. An initial
learning rate 10e−3 with a step decay by a factor of 1/10 at 75th and 150th

is used with the ADAM optimizer. The model is trained for 600 epochs with
early stopping based on the criteria of no improvement of the training set with
patience of 50 epoch is used. The weights that captured the best performance on
the training data are used to evaluate the segmentation model on the holdout
fold. The segmentation networks are implemented in PyTorch and trained using
a single Tesla V100-DGXS-32GB GPU of an NVIDIA DGX-station.

5 Results and Discussion

We perform comparison of the Deeplabv3+ and U-Net having two commonly
used backbones and used both CE and wCE losses (refer to Sec. 3.1). The quan-
titative comparison using 4-fold cross-validation is presented in Table 2. Both
configurations of Deeplabv3+ are comparable (overall mIoU = 0.88) though the
standard deviation is lower when wCE is used. Deeplabv3+ also outperformed
the UNet configurations. The effect of introducing wCE loss for handling class
imbalance problem is more evident from the different UNet configurations. Mo-
bilenetv2 backbone, which has significantly less number of network parameters
(3.5M), showed superior performance than the Resnet50 (26M parameters) back-
bone. Selecting an efficient and robust backbone architecture is essential and can
significantly improve the overall segmentation network performance. From Ta-
ble 2, we can observe that mIoU-F is particularly low compared to the mIoU-BG,
mIoU-H and mIoU-A. This is because (1) the number of per-pixel samples in the
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(a) Head (b) Abdomen (c) Femur

Fig. 3: Boxplots showing the comparison between the best performing models and
the absolute error between the clinically measured and predicted fetal biometry.

Input image Ground-truth DLv3+ (MNv2-wCE) UNet (MNv2-wCE) UNet (Resnet-wCE)

H
C

A
C

F
L

Fig. 4: Qualitative comparison of segmentation methods showing scenarios where
inaccurate segmentation resulted in fetal biometry estimation failure. (Row 1 and
2) HC and AC examples where UNet resulted in inaccurate segmentation. (Row
3) FL example where all three methods failed. This image corresponds to the
only outlier which is visible in Fig. 3(c) Deeplabv3+ error plot.

femur class are very small (Table. 1); (2) a small error in predicted segmentation
vs the ground-truth results in a significantly low IoU value when the object size
is small; (3) of large intraclass variability.

Figure 3 shows the boxplots for the absolute error between the clinically
measured and predicted biometry. The error in head measurements are the low-
est, with a median of 0.80mm for BPD, 1.30mm for OFD and 2.67mm for HC
and fewer outliers compared to other methods when segmentation masks from
Deeplabv3+ (Mobilev2+wCE) are used (Fig. 3(a)). A similar trend is observed
for the abdomen measurements, with a median of 2.39mm for TAD, 3.82mm for
APAD and 3.77mm for AC (Fig. 3(b)). FL showed comparable results with a
median of 2.1mm for Deeplabv3+ (Mobilenet-v2+wCE) but with fewer outliers
(Fig. 3(b)). It is worth mentioning that the obtained error is less than the ±15%
error permissible in the US assessment [22]. Figure 4 presents the qualitative
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comparison of the segmentation methods, depicting cases where either one or all
methods fail in estimating the biometry due to inaccurate segmentation.

From a clinical point of view, successful interpretation of clinical US images
requires an understanding that the fetus, a 3D object, fixed in neither time nor
space is being represented on a 2D grey-scale. Operator experience, combined
with the effects of probe motion and homogeneity of US images contributes to
high inter- and intra-operator variability. US is used extensively in the assess-
ment and management of pregnancies at high risk of fetal growth disorders.
Appropriate management of these cases requires high quality assessment and
reproducible assessment of fetal weight, which can be achieved through AutoFB
as demonstrated from the obtained results.

6 Conclusion

We proposed AutoFB, a unified framework for estimating fetal biometry given
the three standard US planes. The proposed framework exploited the existing
segmentation networks for predicting the segmentation masks for the head, ab-
domen and femur. Head and abdomen were modelled as an ellipse with their
major and minor axes and circumference providing an estimate for the respec-
tive measurements. Femur length was modelled as the diagonal on a rectangle
fitted onto the segmentation mask. Through retrospective scale recovery and
shape fitting, we obtained the fetal biometry estimates. Comparison of the pre-
dicted versus clinically measured fetal biometry showed that the errors in HC
(2.67mm), AC (3.77mm) and FL (2.10mm) were minimal and were better than
the ±15% error that is typically acceptable in fetal US assessment. Future work
involves increasing the training data size for further improving the segmentation
and integrating AutoFB with the standard US plane detection [1] framework.
Moreover, comparing experts and novices performance with the AutoFB can
provide evidence supporting its clinical translation.
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Fig. 1: Predicted fetal biometry from the best performing architecture
(Deeplabv3+ with MobileNetv2) as reported in Table 2 and Fig. 3 versus clin-
ically measured fetal biometry is shown plotted for TAD, APAD, AC, BPD,
OFD, HC and FL. Observe that all measurements lie on a diagonal with a few
outliers evident in OFD, HC and FL.
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