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Abstract. Chest computed tomography (CT) has played an essential
diagnostic role in assessing patients with COVID-19 by showing disease-
specific image features such as ground-glass opacity and consolidation.
Image segmentation methods have proven to help quantify the disease
and even help predict the outcome. The availability of longitudinal CT
series may also result in an efficient and effective method to reliably
assess the progression of COVID-19, monitor the healing process and
the response to different therapeutic strategies. In this paper, we pro-
pose a new framework to identify infection at a voxel level (identification
of healthy lung, consolidation, and ground-glass opacity) and visualize
the progression of COVID-19 using sequential low-dose non-contrast CT
scans. In particular, we devise a longitudinal segmentation network that
utilizes the reference scan information to improve the performance of dis-
ease identification. Experimental results on a clinical longitudinal dataset
collected in our institution show the effectiveness of the proposed method
compared to the static deep neural networks for disease quantification.
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1 Introduction

The Coronavirus Disease 2019 (COVID-19) has infected more than 113 million
people worldwide (as of February 28th, 20211) and caused more than 2.52 million
deaths. Although many cases present only mild symptoms, some of them evolve
into serious illnesses that require intensive medical treatment or lead to death [7].

? First two authors contributed equally to this work.
1 https://coronavirus.jhu.edu/map.html
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Chest computed tomography (CT) has played an essential diagnostic role
in the assessment of patients with COVID-19 by showing specific image pat-
terns such as ground-glass opacity (GGO), crazy paving, and consolidation [22].
Several studies have proposed to automatically analyze COVID-19 infection on
chest images with deep learning [5,26,21,11,12]. However, it is still challenging to
automatically identify and quantify image findings associated with COVID-19
due to the subtle anatomical boundaries, pleural-based location, and variations
in size, density, location, and texture [14,19,27]. Moreover, it is vital to develop
an effective method to reliably assess the progression of COVID-19 and response
to therapy [6,23]. Given the availability of multiple therapy options and to under-
stand anatomical changes during the healing process, a longitudinal evaluation
of CT images can be beneficial [6,9].

Only a few studies have devoted to developing a deep learning-based ap-
proach to assess the progression and response to therapy from longitudinal CT
scans [25,17]. Zhang et al. propose a static segmentation model to classify the
patients into mild and severe patients based on the features extracted from lon-
gitudinal CT scans [25]. Pu et al. propose a framework consisting on the follow-
ing steps (1) segment the lung boundary and vessels, (2) register the boundary
between serial scans using deformable registration, (3) identify regions with mor-
phological changes due to the disease, and (4) assess disease progression [17]. The
registered longitudinal CT scans are used to generate a heatmap visualizing the
difference in diseased vs. healthy areas between scans. Yet, the identification of
affected regions is performed in a static way, i.e., the information between serial
scans is not taken into account. Besides, they do not differentiate image fea-
tures of consolidation and GGO, even though these pathologies provide different
information of infection in COVID-19 cases [28].

In this paper, we propose a novel framework to identify infection at a fine-
grained level (identification of healthy lung, consolidation, GGO, and pleural
effusion) by leveraging spatio-temporal cues between longitudinal scans and vi-
sualize the progression of COVID-19. In particular, we devise a longitudinal
segmentation network that utilizes the reference scan information to improve
the performance of disease segmentation. Even though longitudinal scans share
structural information, differences exist due to the progression of the disease. We
investigate and propose ways to use this information during the segmentation
based on a dataset collected during the first COVID-19 wave of our institution.
The following is the summary of the main contributions.

– To the best of our knowledge, this is the first study to explore the longitudinal
segmentation of CTs of COVID-19 patients. By designing a deep network to
use the information provided in the reference scan, we show that the perfor-
mance of segmentation can be improved compared to the static segmentation
model. Our method shows promising results with limited data.

– We propose a framework to analyze the progression of COVID-19 infection
over time, which is crucial for the course of the disease and the patient’s
recovery.
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Fig. 1. Progression analysis framework: The framework is comprised of three modules:
Longitudinal registration, longitudinal fine-grained segmentation to identify patholo-
gies, and progression analysis. The inputs are two consecutive CT scans (t=0: reference
scan and t=1: follow-up scan).

– We present comprehensive analysis and ablation studies to verify our longi-
tudinal analysis framework’s design choice.

2 Methodology

This section describes our approaches for incorporating spatio-temporal features
into the framework of segmentation and progression quantification. Figure 1
shows overall framework which consists of the following three components: 1)
longitudinal registration, 2) longitudinal segmentation, and 3) progression anal-
ysis. The analyses are performed based on two different time point scans.

2.1 Longitudinal Registration

Due to the nature of chest CT scans, the initial volumes of data between different
time points are highly misaligned. Aspects like patient positioning, variations
of the imaging parameters or devices, different phases in the breathing cycle,
and the disease progression are the main reasons. This misalignment cannot
be described as a linear transformation composed of translation and rotation
between the time points of data and can only be expressed through non-linear
transformations. The misalignment can make the network incapable of using the
longitudinal information present between different time points of data.

As a solution for this problem, we utilize a deformable registration algo-
rithm [16] where a BSpline Transform is defined using a sparse set of grid points
overlaid onto the fixed domain of the image domain to deform it. Using this
algorithm we register the reference scan lung mask M0 to the follow up scan
lung mask M1 and this transform function is defined by RM0→M1(·). Based
on this function, the transformations are applied to the respective CT-scans
as Xreg

0 = RM0→M1
(X0). Using the lung masks, we avoid registration errors

due to the pathological changes in the lung parenchyma while compensating for
positioning, breathing phase, and acquisition-related differences.
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2.2 Longitudinal Segmentation

Due to the challenge of training a 3D model with a limited number of training
data, 2.5D approaches [2,24,18,4] have shown state-of-the-art results on various
medical segmentation problems. For the 3D approach, it is challenging to directly
process a full 3D volume by using current GPU memory limitations [18], which
forces people to operate on 3D patches [20,8]. However, patch-wise training limits
the overall spatial context for accurate semantic segmentation.

In this study, we adopt the 2.5D approach of [4] with a fully convolutional
(FC) DenseNet [10] as a baseline 2D segmentation model. The FC DenseNet
consists of a downsampling path (Encoder) with 5 Transitions Down blocks,
each with 4 layers and an upsampling path (Decoder) with 5 Transitions Up
blocks, each with 4 layers. The model is trained for all three views (coronal,
sagittal, and axial view). At test time, for each given voxel, the segmentation is
conducted on all three orthogonal views. Afterward, the predicted probability of
a given voxel is averaged among views to assign a final predicted probability.

We extend the aforementioned 2.5D segmentation to deal with longitudinal
information by modifying its architecture. To capture subtle spatio-temporal
cues, we concatenate two registered scans from two different time-points as input
for the longitudinal segmentation network: [Xreg

0 , X1] for segmenting pathologies
on X1 or [X1, X

reg
0 ] for X0. This enables the segmentation network to capture

temporal changes as shown in Figure 1. For subjects who have more than two
scans, we select consecutive scans for the segmentation in each step.

2.3 Progression Analysis

To monitor the progression of the COVID-19 infection and the response to ther-
apy, we extract the segmented pathologies from consecutive longitudinal CT
scans and quantify the volume differences between them. Our approach is ca-
pable of quantifying all combinations of changes between different pathologies
and healthy lung parenchyma. In this work’s scope, we define two classes as con-
solidation and non-consolidation since consolidation has shown to be a robust
biomarker for COVID-19 [15]. The progression of consolidation is computed by
subtracting two registered longitudinal CT-scans. The resulting residual voxel
values could be either positive or negative. Positive voxels indicate that a healthy,
GGO or pleural effusion region progresses to consolidation (Progression), and
negative voxels suggest that an area recovers from the severe infection of con-
solidation (Recovery).

2.4 Training with Progression Information

For the optimization of our model, we define an overall loss function combining
a segmentation loss Lseg and a progression loss Lprog. Note that as shown in
Fig. 1, the outputs of our model consist of the segmentation masks for reference
(t=0) and follow-up (t=1) scans and the subtracted volume between reference
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and follow-up scans for presenting progression of the COVID-19 infection. The
overall loss is defined as: L = Lseg + Lprog.

The segmentation loss is defined as Lseg = LMSE(Y0, Ŷ0) + LMSE(Y1, Ŷ1)
where LMSE denotes a mean squared error loss [24,4]. In our evaluation, this
metric yielded better results in comparison to the dice score. Y0 and Ŷ0 denote a
ground truth pathology segmentation map and a predicted segmentation mask
for t=0 scan, respectively. Y1 and Ŷ1 denote a ground truth pathology segmen-
tation map and a predicted segmentation mask for t=1 scan.

The progression loss is defined as Lprog = LMSE(Y con
1 − Y con

0 , Ŷ con
1 − Ŷ con

0 )

where Y con denotes a ground truth consolidation map and Ŷ con denotes a pre-
dicted consolidation map. In those binary maps, consolidation is mapped to 1
and non-consolidation to 0. As explained above, the progression map is calcu-
lated by Y con

1 − Y con
0 . Note that, the progression loss does not minimize the

distance between the two segmentations. Instead it explicitly uses the structural
changes of pathologies through times as cues for modeling the optimization. In
other words, if there are large changes over time, the progression loss encourages
the model to predict those large changes also in the segmentation.

3 Experiment Setup

3.1 Dataset

To our knowledge there is no publicly available longitudinal CT dataset for
COVID-19. Accordingly, to evaluate the proposed method, we used an in-house
clinical dataset which consists of longitudinal low-dose CT-scans from 38 patients
(64±18 years old, 16 females, 22 males) with positive PCR from the first COVID-
19 wave (March-June 2020). 28 patients had two scans and 10 had three. The CTs
were separated 17±10 days (1-43 days) and were taken at admission and during
the hospital stay (33±21 days, 0-71 days). 8 patients of the 38 died; 30 recovered
from COVID-19, 20 of them needing intensive care. All scans were performed in-
house using two different CT devices (IQon Spectral CT and iCT 256, Philips,
Hamburg, Germany) with the same parameters (X-ray current 140-210 mA,
voltage 120 kV peak, slice thickness 0.9mm, no contrast media) and covered the
complete lung. The data was collected retrospectively with the approval of the
institutional review board of our institution (ethics approval 111/20 S-KH).

The dataset was annotated at a voxel-level by a single expert radiologist (5
years experience), generating lung masks (lung parenchyma vs. other tissues) and
pathology masks including four classes: healthy lung (HL), GGO, consolidation
(CONS), and pleural effusion (PLEFF). For segmentation, the radiologist used
the software ImFusion Labels (ImFusion, Munich, Germany).

The dataset was split into a training set of 16 patients (37 volumes) and an
independent test set of 22 patients (49 volumes). From the training set, 12 patient
scans are used for model training and 4 patient scans are used for validation.
The model is finally evaluated on the unseen test set.



6 Kim and Goli et al.

Table 1. Comparison of different methodologies for segmenting CoViD-19 infection on
the independent test set. Dice similarity coefficient is used for metric. The average and
standard error are calculated. ∗ denotes the case that the difference with the proposed
method is statistically significant (p<0.05). HL, CONS, GGO, PLEFF denote healthy
lung, consolidation, ground-glass opacity, and pleural effusion, respsectively.

Method HL CONS GGO PLEFF

Static Network 0.796±0.021∗ 0.322±0.031∗ 0.380±0.028∗ 0.210 ± 0.033∗

Longitudinal Network
0.835±0.019 0.402±0.034 0.435±0.029∗ 0.266±0.041∗

(without progression loss)
Proposed 0.837±0.022 0.406±0.035 0.447±0.030 0.246±0.040

3.2 Implementation Details

The raw CT volumes highly vary in intensity range, size, and alignment. There-
fore, we perform the following pre-processing steps on the raw volumes to enable
effective use of the longitudinal data:
Cropping. Since different body regions can be presented between time points
and patients, we crop the volumes to the lung regions, using the manually-
annotated lung masks.
Clipping and Normalization. To alleviate different intensity ranges among
CT-scans, intensity values outside the range (−1024, 600) are clipped and then
min-max normalization is performed on each volume.
Resizing. After Cropping, resulting volumes vary in size in all three dimensions,
ranging from 100 pixels to 580 pixels. Therefore all volumes are resized to a fixed
size of 300×300×300 with 300 being the median among the cropped-volume sizes.
Slicing and Removing Empty Slices. Finally, the volumes are sliced in each
of the three dimensions to 300 slices, generating sagittal, coronal, and axial views
of the lung. Slices that have a voxel-value variation smaller than 0.001% between
their maximum and the minimum value are considered empty and are removed.
Model Training. For training, Adam optimizer [13] with a learning rate of
0.0001 and a decay rate of 0.1 for every 50 steps was used. The model was
trained over 100 epochs with early stopping if no decrease in the validation loss
was computed for 5 epochs. Our method was implemented in PyTorch 1.4 and
our models were trained on an NVIDIA Titan V 12GB GPU using Polyaxon2.
The source code is publicly available3. Our longitudinal model had 1.3752M
parameters in comparison to its static counterpart 1.3748M.

4 Results and Discussion

Effectiveness of Longitudinal Segmentation First, we conduct comparative
experiments to verify the effectiveness of our longitudinal segmentation method.

2 https://polyaxon.com/
3 https://github.com/lilygoli/longitudinalCOVID
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Table 2. Ablation study to investigate the effectiveness of the registration and using
temporal information in our longitudinal segmentation model. Dice similarity coeffi-
cient is measured on the independent test set.

Method Registration Long. Input HL CONS GGO PLEFF

Without Registration X 0.761 0.311 0.388 0.146
Static Input X 0.774 0.327 0.224 0.160
Proposed X X 0.837 0.406 0.447 0.246

In Table 1, we compare our method with a static network [24] based on FC-
DenseNet [10] and with a longitudinal network without progression loss. This
simpler longitudinal network has the same architecture as our proposed one,
i.e., it concatenates longitudinal CT scans as an input for the segmentation
model, but it is trained using only the segmentation loss. As shown in Table 1,
both longitudinal networks achieved a higher Dice Similarity Coefficient (DSC)
than the static network. The difference was statistically significant for all classes
(p<0.05 by paired t-test [1]). This implies that using longitudinal information
from the reference CT scan is informative to segment pathology on the target
CT scan. In our longitudinal network with progression loss, the DSC was further
improved for HL, CONS, and GGO. But for PLEFF, the performance slightly
decreased. This can be attributed to the fact that the progression loss encourages
the model to focus on CONS rather than on PLEFF. Additionally, PLEFF is a
challenging, under-represented class in our dataset (only 2.17% voxels).

Effect of Longitudinal Registration. To showcase the importance of reg-
istration among the longitudinal scans, we report results with and without de-
formable registration. As seen in Table 2 the performance after registration sub-
stantially improves across the board with the increase ranging from 0.07 to 0.10.

Importance of Temporal Information in Longitudinal Network. In this
experiment, we highlight the importance of the longitudinal scans for the perfor-
mance of the model. Specifically, we concatenate two duplicates of the reference
scan instead of the reference and follow-up scan as input to our model (’static
input’). As shown in Table 2, the longitudinal input (proposed method) outper-
forms the static input for all classes.

Progression Analysis. Finally, we evaluate our method for progression anal-
ysis by comparing with a static network [17], a longitudinal network with multi-
view approach [3] and our model trained without the progression loss. As shown
in Table 3, our longitudinal architecture has a 3.4% increase compared to the
static network. The proposed model with the progression loss has a 4.8% in-
crease with respect to static network. Note that the model using the progression
loss significantly outperformed the static network [17] and the longitudinal net-
work with multi-view approach [3] (p<0.05). Moreover, the progression loss had
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Table 3. Comparison of different methodologies for predicting progression of CoViD-
19 infection on the independent test set. Dice similarity coefficient is used for metric.
The average and standard error are calculated. ∗ denotes the case that the proposed
method outperforms the baseline methods with statistical significance (p<0.05).

Method Recovery Progression Average

Static Network [17] 0.266±0.030∗ 0.471±0.021∗ 0.368±0.015∗

Longitudinal Network
0.287±0.031∗ 0.491±0.028 0.389±0.023∗

(multi-view [3])
Longitudinal Network

0.299±0.032∗ 0.505±0.019 0.402±0.014∗
(without progression loss)

Proposed 0.327±0.033 0.506±0.026 0.416±0.017

Reference 
scan 

GT reference 
scan

Follow-up 
scan

Segmentation 
reference scan

GT follow-up 
scan

Segmentation 
follow-up scan

GT progression 
map

Predicted 
progression map

Fig. 2. Qualitative results of our method for 3 patients from different views. For the
segmentation maps, blue, green, red and yellow denote healthy lung, consolidation,
ground-glass opacity, and pleural effusion, respectively. For the progression map, red
denotes Progression and the green Recovery.

statistically significant improvement for the recovery and average progression
prediction compared to the longitudinal model without the progression loss.

Figure 2 showcases qualitative results of the segmentation and progression
analysis of our method for all 3 different views. As shown in Figure 2, our method
successfully provides segmentation and progression maps for both reference and
follow-up scans across views and patients. Even the under-represented class of
PLEFF is successfully segmented. Regarding the progression, the fine-grained
regions of recovered and progressed consolidation are also correctly identified.

5 Conclusion

In this work, we proposed a new longitudinal segmentation and progression
analysis model for assessing COVID-19 disease over time. Comprehensive ex-
periments were conducted to verify the effectiveness of the longitudinal model.
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By designing the model to exploit the reference CT scan, our method can achieve
higher progression analysis performance compared to the baseline methods.

What makes our approach especially interesting is the ability to monitor the
development of the infection and healing process in COVID-19, and possibly
in other lung diseases. It can be used to compute the differences in disease
progression of different patient subgroups, such as different COVID-19 variants
under the same therapy. Moreover, it could serve as a quantitative measure to
evaluate different therapy approaches. We will further investigate and improve
the clinical usability of the method for a larger patient cohort.
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