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Abstract. Quantitative estimation of the acute ischemic infarct is cru-
cial to improve neurological outcomes of the patients with stroke symp-
toms. Since the density of lesions is subtle and can be confounded by
normal physiologic changes, anatomical asymmetry provides useful in-
formation to differentiate the ischemic and healthy brain tissue. In this
paper, we propose a symmetry enhanced attention network (SEAN) for
acute ischemic infarct segmentation. Our proposed network automati-
cally transforms an input CT image into the standard space where the
brain tissue is bilaterally symmetric. The transformed image is further
processed by a U-shape network integrated with the proposed symme-
try enhanced attention for pixel-wise labelling. The symmetry enhanced
attention can efficiently capture context information from the opposite
side of the image by estimating long-range dependencies. Experimental
results show that the proposed SEAN outperforms some symmetry-based
state-of-the-art methods in terms of both dice coefficient and infarct lo-
calization.
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1 Introduction

Acute ischemic stroke is one of the leading causes of death and disability world-
wide and imposes an enormous burden for the health care system [8]. The use of
pretreatment neuroimaging is critical to improve neurological outcomes of pa-
tients with stroke symptoms. Compared to MRI, non-contrast head CT scan is
commonly used as the initial imaging because of its wide availability and low
acquisition time. To interpret early infarct signs in CT, the Alberta Stroke Pro-
gram Early CT Score (ASPECTS) evaluation was proposed at the beginning in
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(a) Symmetry in axial (b) Symmetry across axial

Fig. 1. The anatomical symmetry of the brain CT images. (a) and (b) show the two
symmetrical patches of the image in axial view and across axial view. The dotted red
line in (b) denotes the slice from axial view. Due to the rotation of patient’s head, the
symmetrical landmarks may appear on different images in the axial view.

the 2000s [2] and has found increasing acceptance in clinical practice. However,
ASPECTS evaluation is only an approximation of the assessment of early is-
chemic changes. Since the density of lesions is subtle and can be confounded by
normal physiologic changes, quantitative estimation of acute ischemic infarct is
challenging. In clinical practice [9], bilaterally symmetric (illustrated in Fig. 1)
provides useful information for the identification of acute ischemic infarct.

Anatomical asymmetry has been utilized in previous works to localize and
segment the abnormal regions for neuroimaging analysis. [12, 15] leverage the
symmetry by adding extra information beyond the input image. [12] calculates
the differences of each voxel by subtracting the original brain from the mirrored
brain. The difference map is further used as the input to train a random forest
classifier to yield lesion segmentation. [15] extracts both the original patch and
its symmetric patch, and feeds them into the network simultaneously. Except for
calculating the asymmetry on image-level, [3,11,16] propose to explore feature-
level fusion of the two symmetry regions. For instance, two-branch networks (e.g.
siamese network) can learn the features of left and right hemispheres and measure
the difference between the features of two hemispheres to analyze abnormalities
such as Alzheimer’s disease [11], ischemic stroke [3,10] and brain tumors [16].
Even though the pixel-wise difference is widely used in previous methods, it can
not efficiently exploit the bilaterally symmetric information due to the limitation
of context modeling. In addition, all the above methods need the input images
to be already calibrated which cannot be guaranteed in practice.

In this paper, a symmetry enhanced attention network (SEAN) is proposed
for acute ischemic infarct segmentation. The proposed SEAN can automatically
transform an input image into the standard space without any human super-
vision. The transformed image is further processed by a U-shape network that
contains encoding and decoding stages. Different from the original design [13],
the encoder performs 3d convolution to leverage context information of adjacent
images in axial. Then, a symmetry enhanced attention module is integrated
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Fig. 2. Overview of our proposed network architecture.

between the encoding and decoding stages to efficiently model the anatomical
symmetry. In summary, the main contributions of our paper are as follows.

1. A symmetry enhanced attention is proposed to capture both in-axial and
cross-axial symmetry information by explicitly estimating the long-range
dependencies.

2. A symmetry-based alignment network is proposed to transform an input
image as bilaterally symmetric in axial without any human supervision.

3. We release the dataset at https://github.com/GriffinLiang/AISD.

2 Method

In this section, we first introduce the symmetry based alignment network in
Sec. 2.1 and give the detail information of how to make the input image bilater-
ally symmetric in axial. Then we define the structure of the proposed symmetry
enhanced attention network which can capture both the in-planar and across-
planar symmetry information for ischemic infarct segmentation in Sec. 2.2. The
whole pipeline is shown in Fig. 2.

2.1 Symmetry based Alignment

Since the poses of patients are arbitrary when they perform CT scans, the brain
images are usually not in standard space. In order to effectively use the sym-
metry of the brain, we attempt to align the image to keep the region of brain
in the center of the image and horizontally symmetrical. However, traditional
registration based method can not be applied in clinical practice due to the high
time complexity. Therefore, we proposed a Symmetry based Alignment Network
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as show in Fig. 2 which can automatically align the brain images with only the
information of images itself. Inspired by Spatial Transformer Networks [7], we
design the symmetry based alignment network as: ¢2d[32,7,7]-relu-max2d[2,2]-
c2d[32,5,5)-relu-max2d|2,2]-fc[3] where c2d[n,c,,cp] denotes a 2d convolutional
layer with n filters of size ¢, X ¢p, max2d[sy, s,] is a 2d max-pooling layer with
the kernel size and the stride as s, X s, fc[n] is a fully connected layer with n
units. The output of the network is interpreted as the parameters « (rotation,
horizontal shift and vertical shift) of rigid transformation matrix.

Given an input volume, we define A; as the i-th slice in the axial view. During
training, the output parameters « is applied to the input slice Al = f,(A;) using
parameterised sampling grid. Then we generate the flipped version of A! as Af
The total loss is designed as the following:

La :Ll(AEvAD+L1(f(;1(A§)7A’i)a (]‘)

where f!(-) denotes the inverse transformation function and L; denotes the
L1 loss. We define the first term of Eqn. (1) as symmetry loss which is the
L1 distance between the aligned image and its horizontally flipped image. The
symmetry loss is based on the assumption that the difference between the image
of brain and its horizontally flipped version will be minimized when the brain
is perfectly aligned. In addition, we need to add constraints to the symmetry
loss to avoid trivial solution where the alignment network can simply transform
the brain region out of the input image. Therefore, a restoration loss is defined
as the L1 distance between the restored image and the original image to learn
useful transformation parameters.

2.2 Symmetry based Segmentation

The proposed segmentation network adopts the structure of UNet [13] which is
mainly composed of two parts: the encoder stage and the decoder stage. Inspired
by [5], we use 3D convolutions as the basic encoding block to keep the context
information from adjacent images in axial view. For the decoding stage, the
middle plane of input volume is retained as the target image and upsampled
to the original resolution for pixel-wise labelling. We name the above network
as HybridUnet. Finally, we cascade the last encoding block with the symmetry
attention module. In this way, the feature representation can be enhanced by its
symmetry information to efficiently assess the presence and extent of ischemic
infarct.

To exploit the context information of the ¢-th axial image, HybridUnet takes
its adjacent images {A; 4|t = —T,--- ,T} as the input. The input images are
firstly processed by the 3d encoder. We design the encoder block as: ¢3d-bn-
relu-c3d-bn-relu-max3d where c3d denotes 3d convolutional layer, bn denotes
3d batchnorm layer and max denotes a 3d max-pooling layer. The encoder stage
contains five encoder blocks. The output feature from the last encoder block is
denoted as X; € REXH*W for the input image A; where H and W represent
the height and width of the output feature respectively and C' is the number of
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the output channels. The output feature X; is further processed by symmetry
attention module in Sec. 2.2 and further processed by four decoding blocks with
the same structure as the original UNet. We train the proposed SEAN by min-
imizing the combination of the generalized Dice loss and the cross-entropy loss
in an end-to-end manner.

Symmetry Enhanced Attention. The symmetry information is hard to ex-
plore by the conventional operation which only processes a local neighborhood
in space. Since the input position and its symmetrical position usually have
long spatial interval distances, local operations need to be applied repeatedly
to capture such long-range dependencies. As mentioned in [6], stacking multiple
convolution operations is computationally inefficient and increases the difficulty
of optimization. To compensate for the drawback of convolution operation, we
propose to model the relationships between symmetrical position with attention
mechanism [14]. Given an input feature map X; € RE*HXW "we first divide it
into P x @ partitions as below,

Xit1 Xi12 - X510
Xi21 X292 - X520

Xip1 Xip2 - XipPg

where X, ;1 € RCXH’XW’ is a subset of X; (H = H xPand W =W x Q).
Then we flip X; horizontally to generate its mirrored feature map X;. Therefore,
the symmetrical partition of X; ; ; can be denoted as Xi,j’k.

For the input partition X; ; 1, its symmetry enhanced attention is composed
of the self-attention module and the symmetry-attention module:

0(Xijk) "o (Xite,jk)
Vd
Q(Xi,j,k)T¢(Xz‘+t,j,k))
Vd ’ (3)

.
T T
Yijke= (Z S! ik 9XKigrin) D Sﬁ,j,k'h(Xith,j,k)T) :
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St jx = Softmax(

7

),

SY

S’ij,k = Softmaz(

3

where S;j,ka gfyjyk e RV XN (N, = H x W/) are the similarity matrix of the self

attention and symmetry attention respectively. 6(-) and ¢(-) perform convolution
c

operations to reduce the number of input channels to d (e.g. d = %) and reshape

the output to R™>*# W' We use v/d as a scaling factor for the inner product to
solve the small gradient problem of softmax function. X; ¢ ;1 and X,y ;5 are
also fed into g(-) and h(-) to compute the new representation by convolution

operations and reshape the output feature map to RE*H W  The symmetry
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enhance feature Y, j, € RE*H W g reshaped to C x H' x W' and further
considered as the residual mapping of X; ;i to acquire the final output of the
symmetry enhanced attention.

3 Experiments

In this section, we first introduce the data acquisition and evaluation indicators
of our model in Sec. 3.1. Then we show the detail information of implementation
in Sec. 3.2. Finally, we compare our approach with the state-of-the-art methods
and conduct extensive ablation studies in Sec. 3.3.

3.1 Experiment setup

Data Acquisition. We obtain 397 Non—Contrast-enhanced CT (NCCT) scans
of acute ischemic stroke with the interval from symptom onset to CT less than 24
hours. The patients underwent diffusion-weighted MRI (DWTI) within 24 hours
after taking the CT. The slice thickness of NCCT is 5mm. We name the above
CT-MRI pairs as acute ischemic stroke dataset (AISD). 345 scans are used to
train and validate the model, and the remaining 52 scans are used for testing.
Ischemic lesions are manually contoured on NCCT by a doctor using MRI scans
as the reference standard. Then a senior doctor double-reviews the labels.

Evaluation Metrics. To quantitatively evaluate the result of our proposed
symmetry based alignment network, we compare the output transformation pa-
rameters with the human annotated rotation and offset. Specifically, a doctor
annotates the beginning and end point of cerebral falx on the middle slice of each
CT scan. The offset angle and the center of brain region are further calculated
as ground truth. We use the average difference of the rotation angle and the
offset distance in the horizontal direction between the model’s output and the
ground truth for each data. As for the segmentation results, we utilize Dice coef-
ficient to quantitatively evaluate the performance. In addition, we also calculate
infarct-level evaluation metrics such as recall, precision and F1 score. To evalu-
ate the clinical value, Pearson correlation between the estimated ASPECTS and
the ground-truth is also performed.

Comparison Methods. We compare the proposed SEAN with following meth-
ods: 1) No symmetry modelling method (Unet) which is a Vanilla Unet without
considering the symmetry information; 2) Symmetry modelling on image-level
(Unet-IM-L1) [12] which calculates the bilateral density L; difference between
symmetric brain regions as one of the input; 3) Symmetry modelling on feature-
level by concatenation (Unet-FT-CC) which takes the original image and its
flipped image as the input of Unet and concatenates the two output features
from the last encoder; 4) Symmetry on feature-level with L1 distance (Unet-FT-
L1) [16] which takes the distance map between the feature from the last encoder
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Table 1. Quantitative results on the AIS dataset.

Network Fusion-Level |Fusion-Type|| Dice | F1 [Recall|Precision
Unet N/A N/A 0.4588|0.5105(0.5019| 0.5196
Unet-IM-L1 Image L1 0.5035|0.5457(0.5318| 0.5603
Unet-FT-L1 Feature L1 0.5121| 0.567 |0.5468| 0.5888
Unet-FT-CC Feature Concat 0.5354| 0.572 |10.5655| 0.5786
HybridUnet N/A N/A 0.4952|0.5433(0.6105| 0.4895
HybridUnet-IM-L1 Image L1 0.5437|0.5992(0.5581| 0.6471
HybridUnet-FT-L1 Feature L1 0.5445|0.5982|0.5543| 0.6497
HybridUnet-FT-CC| Feature Concat 0.5577|0.6015(0.5431| 0.6742
SEAN Feature Attention |[|0.5784(0.6218|0.5880| 0.6597

and its flipped version as an extra information. We also implement the above
methods using HybridUnet [5] as the backbone for further comparison.

3.2 Implementation Details

Our implementation is based on Pytorch framework. For data pre-processing,
we truncate the raw intensity values to the range [40, 100] HU and normalize
each raw CT case to have zero mean and unit variance. The Adam optimizer
is used to train the model with parameters 81 = 0.9, 82 = 0.99 for 150 epochs.
And we set the base learning rate as 1 x 10™* and deploy a poly learning rate
policy where the initial learning rate is multiplied by (1 — W/fﬁ%)pow” and
power = 0.9 after each iteration.

3.3 Results and Discussions

Efficacy of Alignment Network. We evaluate the similarity of the rotation
angle and the offset distance in the horizontal direction between the model’s
output and the ground truth on test data (52 patients). The error of rotation
angle is 3 degrees and the error of shift distance is 5 pixels. From the results, we
can see that the output of the symmetry based alignment network is very close
to the ground truth even though the proposed method is fully unsupervised.
Besides, we register the NCCT images to the standard brain template to align
the images as described in [12]. This operation cost 134 seconds per patient on
average, while the time consumption of our proposed symmetry based alignment
network is only 0.46 seconds per patient on average. The registration method
is based on Advanced Normalization Tools(ANTS) [1], and all experiments are
performed on a Linux server with Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz
and a NVIDIA 2080ti GPU.

Efficacy of SEAN. As shown in Tab. 1, the proposed SEAN achieves the
highest performance (Dice: 0.5784, F1: 0.6218) compared to the other meth-
ods. Since the proposed SEAN benefits from leveraging both the in-planar and



8 K. Liang et al.

Table 2. Ablation study of SEAN on AISD.

Method Dice F1 |[Recall|Precision
baseline 0.4952|0.5433|0.6105| 0.4895
+ Ours (Align) 0.5281(0.5767|0.5506| 0.6056
+ Ours (Align+Self) 0.5635(0.5834/0.5506| 0.6205
+ Ours (Align+Self+Sym)|0.5784(0.6218|0.5880| 0.6597

across-planar symmetry information, it can differentiate the infarct and the nor-
mal physiologic change more efficiently. In general, symmetry based methods
observed significant improvements according to both Dice and F1. This is also
consistent with doctors’ habit in clinical practice. For the effectiveness of the
backbone network, HybridUnet achieves better performance than the original
Unet, which demonstrates the importance of context information from adja-
cent images. Feature-level method outperforms image-level method, since the
feature-level method is robust to the misalignment of the input image. We con-
duct ablation studies of SEAN and show the results in Tab. 2. The influence
of the proposed alignment network and the two type of attention mechanism:
self-attention and symmetry-attention is investigated. According to the results,
it can be seen that the proposed alignment network improves over the baseline
for a large margin. We can also see that symmetry enhanced attention yields a
higher increase in both Dice and F1 comparing to only using self-attention. We
also show some qualitative examples in Fig. 3.

Efficacy of Clinical Usage. To validate the clinical efficacy of the proposed
SEAN, Pearson correlation between the estimated ASPECTS and the ground-
truth is performed. A standard template with ASPECTS regions in the Montreal
Neurologic Institute space [4] is registered to all NCCT images by performing
affine transformation using ANTS. The Pearson correlation between the scores
estimated by SEAN and doctor is 0.75, which further indicates the efficiency of
the proposed method.

4 Conclusion

In this paper, we propose a symmetry enhanced attention network (SEAN) for
acute ischemic infarct segmentation. The proposed network calibrates an input
CT image and capture bilateral symmetry information by explicitly estimat-
ing the long-range dependencies. With the seamless integration, the proposed
symmetry enhanced attention can be applied to any lesion segmentation task.
Experimental results on acute ischemic stroke dataset (AISD) show that the
proposed SEAN outperforms some symmetry-based state-of-the-art methods in
terms of both dice coefficient and infarct localization. The acute ischemic stroke
dataset (AISD) is published for future study.
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Fig. 3. Qualitative comparison of different methods.
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Fig. 2. ASPECTS regions are consist of 10 different parts which are symmetrical with
respect to the cerebral falx.



