Skip to main content

LG-Net: Lesion Gate Network for Multiple Sclerosis Lesion Inpainting

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12907))

Abstract

Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease that results in progressive damage to the brain and spinal cord. Volumetric analysis of the brain tissues with Magnetic Resonance Imaging (MRI) is essential to monitor the progression of the disease. However, the presence of focal brain pathology leads to tissue misclassifications, and has been traditionally addressed by “inpainting” MS lesions with voxel intensities sampled from surrounding normal-appearing white matter. Based on the characteristics of brain MRIs and MS lesions, we propose a Lesion Gate Network (LG-Net) for MS lesion inpainting with a learnable dynamic gate mask integrated with the convolution blocks to dynamically select the features for a lesion area defined by a noisy lesion mask. We also introduce a lesion gate consistency loss to support the training of the gated lesion convolution by minimizing the differences between the features selected from the brain with and without lesions. We evaluated the proposed model on both public and in-house data and our method demonstrated a faster and superior performance than the state-of-the-art inpainting techniques developed for MS lesion and general image inpainting tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005)

    Article  Google Scholar 

  2. Barnes, C., Goldman, D.B., Shechtman, E., Finkelstein, A.: The PatchMatch randomized matching algorithm for image manipulation. Commun. ACM 54(11), 103–110 (2011)

    Article  Google Scholar 

  3. Battaglini, M., Jenkinson, M., Stefano, N.D.: Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum. Brain Mapp. 33(9), 2062–2071 (2012)

    Article  Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Chau, W., McIntosh, A.R.: The Talairach coordinate of a point in the MNI space: how to interpret it. Neuroimage 25(2), 408–416 (2005)

    Article  Google Scholar 

  6. IXI dataset. https://brain-development.org/ixi-dataset/. Accessed 15 Sept 2021

  7. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  8. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  9. Liu, H., Jiang, B., Song, Y., Huang, W., Yang, C.: Rethinking image inpainting via a mutual encoder-decoder with feature equalizations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 725–741. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_43

    Chapter  Google Scholar 

  10. Ma, Y., et al.: Multiple sclerosis lesion analysis in brain magnetic resonance images: techniques and clinical applications. arXiv preprint arXiv:2104.10029 (2021)

  11. Magon, S., et al.: White matter lesion filling improves the accuracy of cortical thickness measurements in multiple sclerosis patients: a longitudinal study. BMC Neurosci. 15, 106 (2014). https://doi.org/10.1186/1471-2202-15-106

    Article  Google Scholar 

  12. Prados, F., et al.: A multi-time-point modality-agnostic patch-based method for lesion filling in multiple sclerosis. Neuroimage 139, 376–384 (2016)

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Sastre-Garriga, J., et al.: MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice. Nat. Rev. Neurol. 16, 171–182 (2020)

    Article  Google Scholar 

  15. De Stefano, N.: Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs 28(2), 147–156 (2014). https://doi.org/10.1007/s40263-014-0140-z

    Article  Google Scholar 

  16. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  17. Xiong, H., Wang, C., Barnett, M., Wang, C.: Multiple sclerosis lesion filling using a non-lesion attention based convolutional network. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12532, pp. 448–460. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63830-6_38

    Chapter  Google Scholar 

  18. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: CVPR, pp. 5505–5514 (2018)

    Google Scholar 

  19. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV, pp. 4471–4480 (2019)

    Google Scholar 

  20. Zhang, Y., Brady, J.M., Smith, S.: Hidden Markov random field model for segmentation of brain MR image. In: Medical Imaging 2000: Image Processing, vol. 3979, pp. 1126–1137 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Australian Government Cooperative Research Centres Project grant (CRCPFIVE000141) and Research Training Program (RTP) Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihao Tang .

Editor information

Editors and Affiliations

Ethics declarations

Compliance with Ethical Standards The study was approved by the University of Sydney Human Research and Ethics Committee and all procedures adhered the tenets of the Declaration of Helsinki; we also appreciate the efforts devoted to collect and share the IXI brain dataset for open access [6].

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 87 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Z., Cabezas, M., Liu, D., Barnett, M., Cai, W., Wang, C. (2021). LG-Net: Lesion Gate Network for Multiple Sclerosis Lesion Inpainting. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics