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Abstract. The boundary of tumors (hepatocellular carcinoma, or HCC)
contains rich semantics: capsular invasion, visibility, smoothness, folding
and protuberance, etc. Capsular invasion on tumor boundary has proven
to be clinically correlated with the prognostic indicator, microvascular
invasion (MVI). Investigating tumor boundary semantics has tremendous
clinical values. In this paper, we propose the first and novel computa-
tional framework that disentangles the task into two components: spatial
vertex localization and sequential semantic classification. (1) A HCC tu-
mor segmentor is built for tumor mask boundary extraction, followed by
polar transform representing the boundary with radius and angle. Vertex
generator is used to produce fixed-length boundary vertices where ver-
tex features are sampled on the corresponding spatial locations. (2) The
sampled deep vertex features with positional embedding are mapped into
a sequential space and decoded by a multilayer perceptron (MLP) for se-
mantic classification. Extensive experiments on tumor capsule semantics
demonstrate the effectiveness of our framework. Mining the correlation
between the boundary semantics and MVI status proves the feasibility to
integrate this boundary semantics as a valid HCC prognostic biomarker.

1 Introduction

Microvascular invasion (MVI) has been clinically identified as a prognostic fac-
tor of hepatocellular carcinoma (HCC) after surgical treatment, whereas it is
undetectable preoperatively on diagnostic imaging [3, 17]. Microscopic features
of HCC such as tumor size, capsule and margin are hypothesized as important
predictors of MVI [1, 25]. Tumor capsule, specific for hepatocarcinogenesis, was
observed in 70% of progressed HCC [12]. Histologically, tumor capsule contains
two layers: the inner layer is composed of tight fibrous tissue containing thin,
slit-like vascular channels, and the outer layer is composed of looser fibrovas-
cular tissue [6]. Tumor capsule invasion increases the risk of vascular invasion
and intrahepatic metastasis, generally indicating poor cancer patient prognosis.
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Fig. 1: Categories of tumor capsule invasion as a type of boundary semantics.

However, despite its strong potential, assessing the presence and integrity of
radiological HCC capsule is an expert-based subjective evaluation. Inter- and
intra-observer variations and lack of reproducibility are the major roadblocks
limiting its wide adoption [8]. There is a critical unmet need to develop new yet
effective computational methods and means to objectively and quantitatively ex-
amine the capsular invasion and focal extensional nodule to predict the precision
prognosis of patients with HCC.

The capsule in radiology can be interpreted as the semantics on tumor bound-
ary (See Fig. 1), and this problem falls into learning the tumor boundary seman-
tics, i.e., dense classification on the boundary pixels. We propose a novel frame-
work that disentangles the task into two pillars: the spatial localization and the
sequential classification. (1) The spatial localization aims to precisely identify
the vertices on tumor boundary that is extracted from predicted tumor mask.
A polar coordinate transform is used to represent the boundary with radius and
angle so that the boundary can be divided to N grids with equidistant angle.
Then we perform an efficient vertex generator to produce the localized vertices’
coordinates. (2) Our sequential learning tackles the semantic classification on
the localized vertices’ coordinates via sampled deep vertex features (that are
concatenated with positional embedding). Finally the formed sequence features
are decoded by a multilayer perceptron (MLP) for semantic classification.

To the best of our knowledge, this is the first work to solve the dense tumor
boundary semantics mining problem and formulate it in a sequential learning
manner. The polar coordinate transform enables us to obtain spatially uniform
boundary coordinates. The vertex sequential features are sampled from multi-
scale pyramid features, permitting to naturally integrate low-/mid-/high-level
cues on boundary semantics. We demonstrate the effectiveness of our approach
on two tumor boundary semantic datasets: capsular invasion (CAP) and focal
extensional nodule (FEN). Our method improves the baseline of entangled op-
timization by 23.26% F1 score on CAP dataset and 10.32% F1 score on FEN
dataset. Moreover, we conduct a study of prognostic biomarker mining to vali-
date the clinical correlation between boundary semantics and MVI status.

Previous work. UPI-Net is proposed in [15] to detect semantic contour in Pla-
cental Ultrasound by binary boundary segmentation which is also studied in na-
ture images by [2,9,18]. In contrast, we detect multi-classes boundary semantics
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Fig. 2: Overview of our tumor boundary semantics modeling framework.

independent to object semantic and/or instance category. Polar representation
is used [16] to localize cell via star-convex polygons and to model foreground in-
stances for instance segmentation [22,23]. Sequential learning is a common task
in natural language processing such as machine translation [19,21], and various
vision tasks [4, 5, 7, 14]. Moreover, to tackle with the class imbalance problem
in sequential learning, Li et al. [13] introduced a sequential dice loss into NLP
tasks as the training objective, which is adopted in our work.

2 Method

Given a tumor RoI image x ∈ RH×W×C , our goal is to predict the correspond-
ing pixel-wise label map along tumor boundary. Unlike existing approaches of
directly training a segmentation network (e.g., U-Net), our method converts
the problem into conducting the sequential prediction on a 1D band label map
y ∈ RNangle .Our overall framework is depicted in Fig. 2.

2.1 Tumor Boundary Spatial Localization

Our encoder is initialized with a ResNet-50 network [10]. ResNet features in
scale S ∈ { 14 ,

1
8 ,

1
16 ,

1
32} will pass through the U-shape blocks, where each block

consists of a 2×upsampling operator, a skip-connection, a 3×3 convolution layer,
and a ReLU layer successively. Multi-scale pyramid features are generated with
each scale feature x ∈ RH

S ×
W
S ×256. We first build a tumor segmentation model

(See ) on top of the multi-scale pyramid features that upsample every scale
feature into scale 1/4 and merge them with an add operator, followed by a 3×3
convolution layer, 4× upsampling operator and a softmax activation layer to
predict the binary tumor mask yt ∈ RH×W . This tumor segmentor is trained
with Dice loss and cross-entropy loss. After obtaining the tumor mask, we employ
the residual of the dilation and the erosion of predicted tumor mask as in [20]
to generate the tumor boundary. Gaussian blurring with a 5×5 kernel is used to
make the boundary thickness closer to the human annotation.
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Polar coordinates is a two-dimensional coordinate system where each point
on a plane is determined by a distance from a reference point and an angle
from a reference direction. The reference point (analogous to the origin of a
Cartesian coordinate system) is called the pole, and the ray from the pole in
the reference direction is the polar axis. The distance from the pole is called the
radial coordinate, and the angle is called the angular coordinate. Hence, (xi, yi)
in Cartesian coordinate system is denoted as (ri, θi) in polar coordinate system
M ; the pole (0, 0) in polar system is exactly the centroid of tumor mask (xc, yc)
in Cartesian system. Cartesian position of the vertex can be recovered from the
inverted transform M ′, where xi = ri cos θi + xc and yi = ri sin θi + yc.

We propose an efficient vertex generator to produce N boundary vertices
(x1, y1), . . . , (xN , yN ). N rectangle grids in polar coordinate system standing
for N rays with equidistant angle ∆θ = 360◦

N are generated. Specifically, grid
k ∈ {1, 2, . . . , N} is filled with a set of candidate vertices (rg, θg) ∈ GR×3 in polar
representation, where θg ∈ {(k−1)∗∆θ, k∗∆θ, (k+1)∗∆θ}, rg ∈ {r|θ = θg}, and
R approximates to the max (r|θ = k ∗∆θ)−min (r|θ = k ∗∆θ). For robustness,
we randomly sample a vertex point each time in N grids iteratively as a data
augmentation strategy.

2.2 Deep Sequential Learning on Tumor Semantics

There are four scales of features from the feature pyramid (in Sec. 2.1) be-
ing processed to the same feature size H

4 ×
W
4 × 64 with bilinear upsampling

and 3×3 convolution, and concatenated channel-wise to generate the feature
xp ∈ RH

4 ×
W
4 ×256. To retain the positional information of each tumor boundary

vertex and to ensure the structural relationship to be learned, we make use of the
coordinate positional map xcoor ∈ RH

4 ×
W
4 ×2, where the channels representing

the x and y Cartesian coordinates are normalized to [−1, 1]. Last we concatenate

xp and xcoor channel-wise to form the feature grids xg ∈ RH
4 ×

W
4 ×256+2. Given

an arbitrary point (xi, yi), a corresponding grid of feature ∈ R258 can be sam-
pled from xg. Recall that each time the efficient vertex generator will generate
a set of boundary vertices (x1, y1), (x2, y2), . . . , (xN , yN ), where total N grids of
feature will be sampled from xg and further sequentialized to xseq ∈ RN×258.
A multilayer perceptron (MLP) is adopted to decode xseq ∈ RN×258 into 1D
sequential classification prediction of f (x) ∈ RN . The MLP contains two lay-
ers with a GELU non-linearity and a softmax activation. To alleviate the class
imbalance where statistically the first class makes accounts for 70%, we exploit
the 1D sequential dice loss [13] with cross entropy loss as the training objec-
tive for the sequential decoding. Let D be the dataset and the labeled data pair
xi,yi ∈ D, the sequential loss Lseq is formulated as:

Lseq = 1−
∑

xi,yi∈D
2

∑
f (xi)yi∑

f (xi) +
∑

yi︸ ︷︷ ︸
1D dice loss

−
∑

xi,yi∈D
yi · log (f (xi))︸ ︷︷ ︸

cross entropy loss

(1)
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2.3 Prognostic Tumor Biomarker Mining

Microvascular invasion (MVI) score is a significant prognostic indicator of HCC
in pathological imaging findings. We aim to fully exploit the correlation between
MVI and our radiological imaging measurements. For each patient with multiple
slices of images, we inference the data using the algorithm described above in
a slice-by-slice fashion and stack the results as the prediction. The number of
pixels of each class in the 3D tumor boundary is counted and divided by the
total number of pixels to obtain a feature vector with three variables (e.g. [0.6,
0.1, 0.3]), where two of them are independent variables making up the patient-
specific capsular biomarker. A logistic regression (LR) classifier is employed to
analyze the correlation between the capsular biomarker and MVI.

3 Experiments and Discussion

Dataset collection. A total of 358 unique patients (4049 axial slices) with
pathologically confirmed liver tumor (HCC) were included in our study, which
are split to 193: 61: 104 for training, validation and testing, respectively. All pa-
tients underwent standard multi-phase contrast-enhanced abdominal CT imag-
ing within 2 weeks before surgery. Capsular invasion (CAP) was categorized
using the following three-point scale: (1) complete capsule or invisible capsule
with smooth tumor margin; (2) incomplete capsule with indistinct disruption;
or (3) incomplete capsule with significant disruption. We also collect a type of
tumor boundary semantics named focal extensive nodule (FEN) to measure the
degree of protruding into the non-tumor parenchyma. FEN was assessed via
a three-point criterion: (1) smooth margin without FEN; (2) slight FEN (the
number of FEN is less than 3); or (3) significant FEN (the number of FEN is
3 or more). CAP and FEN classes were labeled manually using the referring
three-point criteria by three board-certified radiologists on 5mm portal-venous
CT images slice-by-slice. For the prognostic biomarker mining, we collected the
patient-level labels of microvascular invasion (MVI) from their associated
histopathologic examinations, where 0 stands for MVI negative; 1 for MVI pos-
itive. For inter-reader variability analysis, a subset from test-set consisting of 63
patients with 591 axial slices are labelled repeatedly by 3 radiologists Y2, Y4
and Y10, whose year-of-practice are 2, 4 and 10 respectively.
Evaluation metrics. To evaluate the sequential classification, we perform five
quantitative measures including F1 score, accuracy, AUC score, precision and
recall. We adopted Dice Similarity coefficient (DSC) to evaluate the tumor seg-
mentation accuracy that is associated with boundary extraction quality. Follow-
ing [24], we perform quantitative measures including sensitivity, specificity, AUC,
and Youden’s J index (J) to evaluate the logistic regression model of MVI pre-
diction. The class weights in all LR models are adjusted to maximize Youden’s
J index of (sensitivity+specificity-1).
Implementation details. For all experiments, we apply simple data augmen-
tations, e.g., random rotation, random resize and flipping. Models are trained
with SGD optimizer with learning rate 0.01, momentum 0.9 and weight decay
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Table 1: Comparisons on CAP dataset and FEN dataset. The evaluation on
sequential classification are based on F1, accuracy, AUC, precision and recall(%).
We use DSC(%) to evaluate the tumor segmentation in our method.

Dataset Model F1 Accuracy AUC Precision Recall DSC-Tumor

CAP
Baseline 25.28 47.57 51.48 33.09 23.99 -

Ours 48.42 64.19 64.85 54.15 48.23 87.74

FEN
Baseline 26.26 44.68 49.36 34.58 25.62 -

Ours 36.58 52.37 59.59 42.52 37.46 88.29

1e-4. The default batch size is 64 and default training epoch is 300. The tu-
mor segmentation branch and the sequential classification branch are optimized
jointly in training. In addition, during training, we use the proposed train-time
efficient vertex generator while during testing we directly generate the vertices
from predicted tumor boundary.

Quantitative comparisons. The baseline mentioned in Sec. 2 is a multi-classes
segmentation network consisting of the same ResNet-50 encoder as ours and an
UNet segmentation decoder. The baseline directly produces 2D semantic bound-
ary mask which is further converted to 1D sequential band prediction using the
vertex-based mask sampling, similar to our test-time vertex generating and fea-
ture sampling. There are two branches in our framework: tumor segmentation
and sequential prediction. Table. 1 shows our framework can achieve 87.74%
tumor DSC on the capsular invasion (CAP) dataset and 88.29% tumor DSC
on the focal extensional nodule (FEN) dataset, facilitating high-quality bound-
ary extraction and vertices generation. For sequential prediction, our framework
outperforms the baseline on all measures, where the F1 score is superior by
23.25% on CAP and by 10.24% on FEN dataset. The average tumor segmenta-
tion accuracy achieves 88% DSC, indicating there is a margin of error between
predicted and ground-truth tumor boundary. An upper-bound performance of
our overall framework may be expected by replacing the predicted boundary
with ground-truth in vertex localization. However, the quantitative results in
Table. 3 (GT Vertices) indicate otherwise. This observation can be explained
from [11] that claims the reliability of human-labelled boundary ground-truth
is questionable due to ill-posed nature of boundary detection and uncertainty
caused by human-annotated error. This result suggests that our framework is
robust against slight shifts of boundaries due to its built-in efficient vertex gener-
ator and pyramid features. We also provide qualitative comparison results on
the Capsular invasion prediction, as shown in Fig . 3. From there, our model is
observed as the better solution to recover the boundary shape while the baseline
fails sometimes (in the second row); and has stronger representation power to
encode the context and distinguish the boundary semantics.

Comparison with inter-reader variability. To quantify the inter-reader vari-
ability issue and how our approach measures against it, we compare the three ra-
diologists’ annotations (Y2, Y4, Y10) with each other and our prediction against
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Table 2: Inter-reader variability analysis. R1 and R2 are annotation providers.
Taking the ten-year practiced radiologist (Y10) as the standard, our algorithm’s
performance is comparable to the four-year practiced radiologist’s (Y4).

R1 R2 F1 Accuracy AUC Precision Recall

Y2 Y10 51.40 59.18 66.05 55.98 51.78
Y2 Y4 54.86 62.23 65.78 57.04 55.80
Y4 Y10 49.87 57.92 63.74 50.87 53.86
average 52.04 59.78 65.19 54.63 53.81

Ours Y2 38.78 54.16 62.52 38.00 46.28
Ours Y4 42.49 56.67 63.15 41.70 50.20
Ours Y10 48.60 67.65 65.24 48.72 53.26

average 43.29 59.49 63.64 42.81 49.91

Table 3: Verification of the upper bound with GT Vertices and the ablation
study on pyramid feature, coordinate positional map, and number of vertices.
All experiments are run on CAP dataset.

PyraFeat CoordPos N Vertices GT Vertices F1 Accuracy AUC Precision Recall

X 90 44.99 63.28 64.2 51.15 44.47

X 90 41.44 61.76 63.69 48.12 40.52

X X 30 47.84 62.71 63.94 54.19 47.44

X X 90 X 47.5 64.23 64.79 53.63 47.23

X X 90 48.42 64.19 64.85 54.15 48.23

them. The relatively poor inter-reader consistency in Table 2 show that the task
is intrinsically challenging for human readers and the boundary semantics an-
notations lack of objectivity. Taking the ten-year practicing radiologist (Y10)
as standard, our automated performance is closely equivalent to the four-year
experienced radiologist (Y4), clearly proving the usability of our algorithm.

Ablation study. We conduct the ablation study to analyze the effectiveness
of different algorithm modules. The results are summarized in Table 3, where
PyraFeat for pyramid feature, CoordPos for coordinate positional map, and
N Vertices for number of vertices/rays. (1) We investigate the impact of pyra-
mid feature. In ablation, we only keep the 1

4 scale of feature for vertex feature
sampling, instead of four scales pyramid feature. From the second row of Table
3 without the pyramid feature, the model performance drops significantly on
all measures. This is because the boundary semantics in our work are affected
by several factors including tumor size, tumor type and the slice position, and
consequently the pyramid feature in multi-scale facilitates the integrated use of
low-/mid-/high level cues naturally. (2) Adding the coordinate positional map
demonstrates performance robustness improvement, as the sequential feature en-
codes the positional dependencies. (3) Due to the vital role of boundary vertices
in our framework, we analyze the impact of different numbers of vertices (i.e.,
the number of rays). By comparing the third row versus the fifth row in Table
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(c) Ground-Truth (d) Baseline (e) Ours(b) Tumor RoI image(a) CT image

0

0

0

Fig. 3: Qualitative comparison. (a) Whole CT image, (b) Tumor RoI image,
(c) Ground-Truth, (d) Baseline prediction, (e) Our prediction. The sequence is
flatten clockwise with the starting ray of 0 angle shown in (c).

Table 4: The evaluated results (%) of logistic regression for predicting MVI from
the capsular biomarker.

Sensitivity Specificity AUC J

UpperBound (Ground-truth) 55.88 82.85 69.36 38.73

Our prediction 67.64 72.85 70.25 40.50

3, the setting of 30 vertices yields inferior results than the default 90 vertices,
implying that denser vertices are favored by our task.

Prognostic biomarker mining. The inter-reader variability and the am-
biguous annotation of capsular invasion in CT scans may undermine the per-
formance since the reported results in Table. 1 are far less than perfect. This
motivates us to further examine the effectiveness of our system on histopathol-
ogy, which are widely considered as objective observation rather than subjective
interpretation. The capsular biomarkers in the UpperBound setting uses features
(pixel ratio of three classes, see Sec. 2.3) calculated from the ground-truth CAP
annotations while those biomarkers in “our prediction” uses features calculated
from our model’s prediction. Table. 4 reports the correlation of the patient-
specific capsular biomarkers and the MVI analyzed by logistic regression. It is
surprising that our prediction slightly outperforms the upper bound in AUC,
suggesting our predicted capsular biomarker performs comparable to radiolo-
gists’ manual annotations for the clinically important task of prognostic MVI
prediction.

4 Conclusion

Capsular invasion on tumor boundary has been clinically hypothesized of being
correlated with the prognostic indicator MVI. In this paper, we present a novel
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quantitative computing framework on modeling the tumor boundary semantics
of capsular invasion by disentangling this task to efficient spatial localization and
sequential boundary semantics learning. The detected tumor boundary seman-
tics are directly converted into a prognostic biomarker that leads to a stronger
statistical correlation with MVI than the version using human annotation. For
the first time we interpret the boundary semantics as an effective tumor prognos-
tic biomarker through objective computation, and provide an alternative non-
invasive way to discover the subtle sign of prognostic vascular invasion.

References

1. An, C., Kim, M.J.: Imaging features related with prognosis of hepatocellular car-
cinoma. Abdominal Radiology 44(2), 509–516 (2019)

2. Bertasius, G., Shi, J., Torresani, L.: High-for-low and low-for-high: Efficient bound-
ary detection from deep object features and its applications to high-level vision.
In: Proceedings of the IEEE International Conference on Computer Vision. pp.
504–512 (2015)

3. Chan, A.W., Zhong, J., Berhane, S., Toyoda, H., Cucchetti, A., Shi, K., Tada, T.,
Chong, C.C., Xiang, B.D., Li, L.Q., et al.: Development of pre and post-operative
models to predict early recurrence of hepatocellular carcinoma after surgical resec-
tion. Journal of hepatology 69(6), 1284–1293 (2018)

4. Chen, G., Chen, J., Lienen, M., Conradt, J., Röhrbein, F., Knoll, A.C.: Flgr:
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9. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours
from inverse detectors. In: 2011 International Conference on Computer Vision. pp.
991–998. IEEE (2011)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

11. Hou, X., Yuille, A., Koch, C.: Boundary detection benchmarking: Beyond f-
measures. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2123–2130 (2013)

12. Kojiro, M.: Histopathology of liver cancers. Best Practice & Research Clinical
Gastroenterology 19(1), 39–62 (2005)



10 J. Chen et al.

13. Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., Li, J.: Dice loss for data-imbalanced
nlp tasks. arXiv preprint arXiv:1911.02855 (2019)

14. Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., Yuille, A.: Deep captioning with
multimodal recurrent neural networks (m-rnn). arXiv preprint arXiv:1412.6632
(2014)

15. Qi, H., Collins, S., Alison Noble, J.: Upi-net: semantic contour detection in pla-
cental ultrasound. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops. pp. 0–0 (2019)

16. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-
convex polygons. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 265–273. Springer (2018)

17. Shah, S.A., Cleary, S.P., Wei, A.C., Yang, I., Taylor, B.R., Hemming, A.W., Langer,
B., Grant, D.R., Greig, P.D., Gallinger, S.: Recurrence after liver resection for
hepatocellular carcinoma: risk factors, treatment, and outcomes. Surgery 141(3),
330–339 (2007)

18. Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: A deep convolu-
tional feature learned by positive-sharing loss for contour detection. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 3982–3991
(2015)

19. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. arXiv preprint arXiv:1409.3215 (2014)

20. Tang, Y., Tang, Y., Zhu, Y., Xiao, J., Summers, R.M.: E2net: An edge enhanced
network for accurate liver and tumor segmentation on ct scans. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention. pp.
512–522. Springer (2020)

21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

22. Xie, E., Sun, P., Song, X., Wang, W., Liu, X., Liang, D., Shen, C., Luo, P.: Polar-
mask: Single shot instance segmentation with polar representation. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp.
12193–12202 (2020)

23. Xu, W., Wang, H., Qi, F., Lu, C.: Explicit shape encoding for real-time instance
segmentation. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. pp. 5168–5177 (2019)

24. Yao, J., Shi, Y., Lu, L., Xiao, J., Zhang, L.: Deepprognosis: Preoperative prediction
of pancreatic cancer survival and surgical margin via contrast-enhanced ct imaging.
In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 272–282. Springer (2020)

25. Zhu, F., Yang, F., Li, J., Chen, W., Yang, W.: Incomplete tumor capsule on preop-
erative imaging reveals microvascular invasion in hepatocellular carcinoma: a sys-
tematic review and meta-analysis. Abdominal Radiology 44(9), 3049–3057 (2019)


	Sequential Learning on Liver Tumor Boundary Semantics and Prognostic Biomarker Mining

