Skip to main content

Learning Neuron Stitching for Connectomics

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12908))

Abstract

The pipeline of connectomics usually divides the large-scale electron microscopy volumes into multiple 3D blocks and segments them independently. The segmentation results in adjacent blocks demand subtle merging so that corresponding neurons can be correctly stitched. In this paper, we propose the first deep learning based neuron stitching method for connectomics. Specifically, we densely slide a 3D window along the shared face of two adjacent blocks to generate the training and testing input. A classifier based on a 3D convolutional neural network is utilized to identify whether two instance objects from adjacent blocks should be merged. The stitching label is obtained from the in-block segmentation of dedicated blocks. Experimental results on isotropic and anisotropic datasets demonstrate that our stitching method outperforms state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CREMI: MICCAI challenge on circuit reconstruction from electron microscopy images (2016). https://cremi.org/

  2. Funke, J., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1669–1680 (2018)

    Article  Google Scholar 

  3. Haehn, D., Kaynig, V., Tompkin, J., Lichtman, J.W., Pfister, H.: Guided proofreading of automatic segmentations for connectomics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9319–9328 (2018)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15(8), 605–610 (2018)

    Article  Google Scholar 

  6. Kasthuri, N., et al.: Saturated reconstruction of a volume of neocortex. Cell 162(3), 648–661 (2015)

    Article  Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  8. Kizilyaprak, C., Daraspe, J., Humbel, B.: Focused ion beam scanning electron microscopy in biology. J. Microsc. 254(3), 109–114 (2014)

    Article  Google Scholar 

  9. Knowles-Barley, S., et al.: RhoanaNet pipeline: dense automatic neural annotation. arXiv preprint arXiv:1611.06973 (2016)

  10. Lichtman, J.W., Pfister, H., Shavit, N.: The big data challenges of connectomics. Nat. Neurosci. 17(11), 1448–1454 (2014)

    Article  Google Scholar 

  11. Matejek, B., Haehn, D., Zhu, H., Wei, D., Parag, T., Pfister, H.: Biologically-constrained graphs for global connectomics reconstruction. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2084–2093. IEEE (2019)

    Google Scholar 

  12. Matveev, A., et al.: A multicore path to connectomics-on-demand. In: Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 267–281 (2017)

    Google Scholar 

  13. Meilă, M.: Comparing clusterings by the variation of information. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 173–187. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_14

    Chapter  Google Scholar 

  14. Meirovitch, Y., et al.: A multi-pass approach to large-scale connectomics. arXiv preprint arXiv:1612.02120 (2016)

  15. Nunez-Iglesias, J., Kennedy, R., Parag, T., Shi, J., Chklovskii, D.B.: Machine learning of hierarchical clustering to segment 2D and 3D images. PloS One 8(8), e71715 (2013)

    Google Scholar 

  16. Nunez-Iglesias, J., Kennedy, R., Plaza, S.M., Chakraborty, A., Katz, W.T.: Graph-based active learning of agglomeration (GALA): a python library to segment 2D and 3D neuroimages. Front. Neuroinform. 8, 34 (2014)

    Article  Google Scholar 

  17. Parag, T., Chakraborty, A., Plaza, S., Scheffer, L.: A context-aware delayed agglomeration framework for electron microscopy segmentation. PloS one 10(5), e0125825 (2015)

    Google Scholar 

  18. Plaza, S.M.: Focused proofreading to reconstruct neural connectomes from EM images at scale. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 249–258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_26

    Chapter  Google Scholar 

  19. Plaza, S.M., Berg, S.E.: Large-scale electron microscopy image segmentation in spark. arXiv preprint arXiv:1604.00385 (2016)

  20. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  21. RhoANA: dense automatic neural annotation (2016). https://github.com/Rhoana/rhoana/

  22. Stevens, J.K., Davis, T.L., Friedman, N., Sterling, P.: A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections. Brain Res. Rev. 2(1–3), 265–293 (1980)

    Article  Google Scholar 

  23. Takemura, S.y., et al.: A visual motion detection circuit suggested by drosophila connectomics. Nature 500(7461), 175–181 (2013)

    Google Scholar 

  24. Takemura, S.Y., et al.: Synaptic circuits and their variations within different columns in the visual system of drosophila. Proc. Nat. Acad. Sci. 112(44), 13711–13716 (2015)

    Google Scholar 

  25. Zheng, Z., et al.: A complete electron microscopy volume of the brain of adult drosophila melanogaster. Cell 174(3), 730–743 (2018)

    Article  Google Scholar 

  26. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  27. Zung, J., Tartavull, I., Lee, K., Seung, H.S.: An error detection and correction framework for connectomics. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6821–6832 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by Key Area R&D Program of Guangdong Province with grant No. 2018B030338001, Anhui Provincial Natural Science Foundation under grant No. 1908085QF256, National Natural Science Foundation of China under grant No. 61901435, 62076230 and University Synergy Innovation Program of Anhui Province No. GXXT-2019-025.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1582 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X. et al. (2021). Learning Neuron Stitching for Connectomics. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12908. Springer, Cham. https://doi.org/10.1007/978-3-030-87237-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87237-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87236-6

  • Online ISBN: 978-3-030-87237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics