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Abstract. Optical coherence tomography angiography (OCTA) is a novel
non-invasive imaging technique that allows visualizations of vasculature
and foveal avascular zone (FAZ) across retinal layers. Clinical researches
suggest that the morphology and contour irregularity of FAZ are im-
portant biomarkers of various ocular pathologies. Therefore, precise seg-
mentation of FAZ has great clinical interest. Also, there is no existing
research reporting that FAZ features can improve the performance of
deep diagnostic classification networks. In this paper, we propose a novel
multi-level boundary shape and distance aware joint learning framework,
named BSDA-Net, for FAZ segmentation and diagnostic classification
from OCTA images. Two auxiliary branches, namely boundary heatmap
regression and signed distance map reconstruction branches, are con-
structed in addition to the segmentation branch to improve the segmen-
tation performance, resulting in more accurate FAZ contours and fewer
outliers. Moreover, both low-level and high-level features from the afore-
mentioned three branches, including shape, size, boundary, and signed
directional distance map of FAZ, are fused hierarchically with features
from the diagnostic classifier. Through extensive experiments, the pro-
posed BSDA-Net is found to yield state-of-the-art segmentation and clas-
sification results on the OCTA-500, OCTAGON, and FAZID datasets.

Keywords: Boundary Shape and Distance · FAZ · Segmentation · Clas-
sification · OCTA · Joint Learning

1 Introduction

Optical coherence tomography angiography (OCTA) is an emerging non-invasive
ophthalmological imaging technique with an ability to generate high-resolution
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volumetric images of retinal vasculature. It has been increasingly recognized
as an invaluable imaging technique to visualize retinal vessels and foveal avas-
cular zone (FAZ) [19]. OCTA en face maps are produced by projection over
regions of selective depths, and can be basically divided into superficial images
and deep ones with different fields of view (FOVs), e.g., 3 mm × 3 mm and
6 mm × 6 mm, obtained from different scan modes. The former mode has a
higher scan resolution than the latter one, and thus the FAZ and capillaries are
depicted more clearly. In contrast, the latter mode covers a broader area and
has a greater ability in detecting pathological features such as microaneurysms
and non-perfusion [6,13]. Many retinal biomarkers are extracted from the OCTA
en face maps (hereinafter collectively referred to as OCTA images), given that
the flattened retinal structures in OCTA images are more informative and con-
venient for ophthalmologists to examine [14]. Existing evidence suggests that
the morphology and contour irregularity of FAZ are highly relevant to various
ocular pathologies such as diabetic retinopathy (DR), age-related macular de-
generation (AMD), and so on [17,23,31]. For instance, patients with high myopia
typically have reduced FAZ areas, whereas macular ischemia caused by diabetes
have enlarged FAZ areas [4,21]. As such, precise FAZ segmentation is of great
clinical significance. Moreover, OCTA as a new modality shows its potential in
computer-aided eye disease and eye-related systemic disease diagnoses [19].

In the past few years, several automatic FAZ segmentation algorithms have
been proposed, which can be mainly divided into two categories. The first cate-
gory is unsupervised methods, typically including statistical segmentation meth-
ods and mathematical morphology methods. For instance, Haddouche et al. [9]
employed a Markov random fields based method to detect FAZ. Pipelines based
on combinations of morphology processing methods and transformation meth-
ods also yielded reasonable results [7,18,24]. The past few years have witnessed
a rapid development of the second category of methods, the deep learning based
methods, which achieved overwhelming performance in almost all computer vi-
sion fields. Several works based on UNet [22] and its variants for FAZ segmenta-
tion have been reported [8,14,15,16]. Despite their progress, these methods still
have limitations, such as imprecise boundaries due to inferior image quality, con-
fusing FAZ with interfering structures, generating inevitable outliers when there
exists erroneous layer projection, and failing to segment low contrast FAZ from
its surrounding region. Some representative images are shown on the left panel of
Fig. 1 and Fig. 2. The main reason for these problems is that UNet based meth-
ods typically lack the ability to learn sufficiently strong prior knowledge via single
task/loss constraint on small medical image datasets. As for OCTA-based auto-
matic diagnostic classification, only a few papers have reported their attempts.
For example, Minhaj et al. designed several hand-crafted features such as vessel
tortuosity and FAZ area, and employed support vector machine for classification
and staging [2]. Deep ImageNet-pretrained networks have also been proposed for
classifying small-sampled OCTA datasets [3,12]. However, these methods are still
very preliminary given most of them only utilized pretrained models followed by
fine-tuning OCTA images from the specific study of interest, and there is still
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room for improvement. Meanwhile, there is no research showing that explicit
or implicit FAZ-related features can be effectively and interpretably utilized in
deep classification networks.

In such context, we propose a novel hierarchical and multi-level boundary
shape and distance aware joint learning framework for FAZ segmentation and
eye-related disease classification utilizing OCTA images. Two auxiliary branches,
namely boundary heatmap regression and signed distance map (SDM) recon-
struction branches, are constructed in addition to the segmentation branch fol-
lowing a shared encoder to improve the segmentation performance. Also, both
low-level and high-level features from the aforementioned three branches, in-
cluding shape, boundary, and signed directional distance map of FAZ, are fused
hierarchically with features from the diagnostic classifier.

The main contributions of this paper are four-fold: (1) We present the first
joint learning framework, named BSDA-Net, for FAZ segmentation and multi-
disease (e.g. DR, AMD, diabetes and myopia) classification from OCTA images.
(2) We propose boundary heatmap regression and SDM reconstruction auxiliary
tasks, which can effectively improve the performance of FAZ segmentation in
both joint learning and single-task learning settings. (3) Via hierarchically fusing
features from decoders of the three segmentation-related tasks and the classifier,
we demonstrate the effectiveness of FAZ features in guiding and boosting deep
classification networks interpretably. (4) We validate the effectiveness of our
method on three publicly-accessible OCTA datasets, and our approach achieves
state-of-the-art (SOTA) performance in both tasks, establishing new baselines
for the community. We make our code available at https://github.com/llmir/
MultitaskOCTA.

2 Methodology

The proposed joint learning framework of BSDA-Net is shown in Fig. 1, which is
composed of a multi-branch segmentation network (segmentor) and a classifier.
Each component will be described detailedly in the following subsections.

2.1 Segmentation Network

As illustrated in Fig. 1, the segmentor in BSDA-Net adopts the widely employed
encoder-decoder architecture, which is composed of a shared encoder E and three
different decoders, namely a segmentation branch S, a soft boundary regression
branch B, and a SDM reconstruction branch D.

BSDA-Net is a general framework, and any segmentation network with an
encoder-decoder architecture, such as UNet [22], UNet++ [32], PSPNet [30], and
DeepLabv3+ [5], can fit in. In this paper, we employ an adapted UNet structure
with ResNeSt50 being the encoder for illustration [29]. The three decoders have
the same structure, and features from the penultimate layer of branch B are
concatenated to features from the corresponding layer of branch S for better
contour perception and preservation. Each decoder module comprises nearest

https://github.com/llmir/MultitaskOCTA
https://github.com/llmir/MultitaskOCTA
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Fig. 1. Schematic representation of the architecture of our proposed framework.

upsampling with a scale factor of 2, followed by two layers of 3 × 3 filters,
batch normalization (BN), and ReLU. In our setting, three small decoders are
adopted, with the initial number of feature maps being 256 and getting halved
after every upsampling layer. Under small dataset conditions, the edge region
of a predicted mask may be inaccurate and has a high probability of being over
or under segmented. Also, interfering structures and erroneous layer projection
in OCTA images typically lead to outliers. We therefore propose a novel multi-
task combination by constructing two auxiliary tasks to reconstruct edges and
SDM, which provide the encoder with more topological priors both explicitly
and implicitly and make them collaborate with the primary segmentation task
to obtain a more accurate target segmentation mask.

Given a target FAZ and a point x in the OCTA image, the SDM of the
ground truth G is formulated as

Gsd = FSDM (∂G) =

− infy∈∂G ‖x− y‖2, x ∈ Gin
0, x ∈ ∂G
infy∈∂G ‖x− y‖2, x ∈ Gout

, (1)

where ‖x − y‖2, ∂G, Gin, and Gout respectively denote the Euclidean distance
between pixels x and y, the boundary, the inside and outside of the FAZ. Com-
pared to the fixed distance map (DM) suggested in [14] which may produce wrong
guidance and fail when the foveal center deviates from the image center and the
normal DM which only calculates distance of either foreground or background
[26,27], SDM has two main advantages. It considers the distance transformation
information of both foreground and background, which also characterizes the di-
ameter of FAZ and the fovea position. Moreover, since the target area is typically
smaller than the background, through respectively normalizing the distance in-
side and outside FAZ to [−1, 0] and [0, 1], SDM naturally imposes more weights
on the interior region and is beneficial for solving the class imbalance issue. As
for the boundary regression branch, considering the subjectivity in manual an-
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notations, we generate a Gaussian kernel matrix G(·) centered at each point cn
on the boundary ∂G and construct a soft label heatmap in the form of Heatsum
and treat it as a regression task using mean squared error (MSE) loss instead of
treating it as a single pixel boundary segmentation problem:

G(cn) =
1

2πσ2
e−‖x−cn‖

2
2/2σ

2

, (2)

Heatsum(G(c1),G(c2)) = 1− (1− G(c1)) ◦ (1− G(c2)), (3)

Gbd = Gaussheat(∂G) = Heatsum(G(c1),G(c2), ...,G(cn)),∀cn ∈ ∂G, (4)

where ◦ denotes the Hadamard product. Also, Gbd is normalized to [0, 1] with
values less than 0.001 set to be 0 before normalization. For the segmentation
branch S, we use Dice loss to evaluate the pixel-wise agreement between the
prediction and the ground truth. Therefore, with trade-off parameters λ1, λ2,
λ3, the total objective function of the segmentation model is defined as

Lseg = λ1Lsh + λ2Lbd + λ3Lsd
= λ1Ldice(S(psi ), G) + λ2Lmse(pbi , Gnbd) + λ3Lmse(pdi , Gnsd),

(5)

where psi , p
b
i , and pdi respectively denote the predictions from branches S, B,

and D given an input image i, and S represents the Sigmoid function. Gnbd and
Gnsd are the normalized Gbd and Gsd.

2.2 Classification Network and Joint Learning Strategy

In the training phase, the segmentor is first trained via the aforementioned tasks,
while the classifier C is initially frozen to avoid instability caused by inaccu-
rate features from the segmentation network. We set a starting flag τ when
the segmentation network almost converges to start joint learning. During joint
learning, the multi-level features reconstructed by branches S, B, and D are suf-
ficiently percepted by the unfrozen classifier in a hierarchical and interpretable
way. For each feature concatenation, randomly initialized 1 × 1 convolutions are
adopted for dimensionality reduction. Being consistent with the encoder E, we
use ResNeSt50 partially (expect the above convolutions) initialized with weights
pretrained on ImageNet as the classifier and employ the standard Cross-Entropy
loss as Lcl. So the final loss of BSDA-Net is defined as (with coefficient λ0 to
balance the two loss terms):

Ljoint =

{
Lseg, epoch 6 τ

Lseg + λ0Lcl, epoch > τ
. (6)

3 Experiments and Results

Dataset and Preprocessing. We evaluate our proposed BSDA-Net frame-
work on three recently released OCTA datasets: OCTA-500, OCTAGON, and
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Foveal Avascular Zone Image Database (FAZID), the details of which are listed
in Table 1. In OCTA-500, we only use data from three categories (normal, DR,
and AMD) each with a sample size greater than 20. For OCTAGON, the two
categories are normal and DR, and FAZID includes normal, diabetic, and my-
opic. For each dataset, to enlarge the sample size and to better evaluate the
classification performance, we unify and combine images with different spatial
resolutions via resizing and center cropping. The final category distributions
within the three datasets are listed in Tables A1 to A3 (in appendix). We adopt
data augmentation methods that will not change the spatial resolution and FAZ
shape, including random rotation, flipping, contrast adjustment, adding Gaus-
sian noise, and random blurring.

Table 1. Details and preprocessing of the three datasets utilized in our experiments.

Dataset OCTA-500[14,15] OCTAGON[7] FAZID[1]

FOV [mm] 3 × 3 6 × 6 3 × 3 6 × 6 6 × 6

Original resolution [px] 304 × 304 400 × 400 320 ×320 420 × 420

Retinal depth superficial both superficial and deep superficial

Number 195 169 108 105 304

Preprocessing resize crop + resize resize crop crop

Processed size [px] 192 × 192 160 × 160 224 × 224

Implementation Details. All compared models and the proposed BSDA-Net
framework are implemented with Pytorch using NVIDIA Tesla A100 GPUs.
We adopt ResNeSt50 as the encoder of both the segmentation network and the
classifier in this work. We use the Adam optimizer with a learning rate of 1
× 10−4 with no learning rate policy for the segmentation network and another
separate Adam optimizer with a learning rate of 2 × 10−5 for the classifier.
Empirically, we set the starting point of the joint learning τ as 20 and train the
network for a total of 200 epochs. Trade-off coefficients λ0, λ1, λ2, λ3, and σ for
soft contour are respectively set to be 1, 3, 1, 1, and 2. For internal validation, we
split each dataset into 70%, 20%, and 10% for training, testing, and validation.
Five-fold cross-validation is used for fair comparison in all settings.

Evaluation of FAZ Segmentation. All methods are evaluated using four met-
rics, i.e., Dice[%], Jaccard[%], Average Symmetric Surface Distance (ASD[px]),
and 95% Hausdorff Distance (95HD[px]) [11]. Table 2 tabulates the segmentation
results on the three OCTA datasets. We compare BSDA-Net with the baseline
ResNeSt-UNet (based on our implementation) and several ablation models (to
verify the impact of each auxiliary task), as well as several SOTA segmentation
models, e.g., Deeplabv3+, PSPNet for natural image segmentation and UNet,
UNet++ for medical image segmentation. By compared with the sixth row, the
seventh and eighth rows in Table 2 indicate that the soft boundary regression
constraint and the SDM reconstruction are effective in enhancing the FAZ seg-



BSDA-Net: Boundary Shape and Distance Aware Joint Learning Framework 7

mentation performance in terms of every evaluation metric for all three datasets.
The last two rows of that table indicate that when jointly learning classification
and segmentation, though subsequent results identify the effectiveness of such
joint learning strategy for boosting the classification performance, BSDA-Net
may not achieve the best segmentation results. In other words, the joint learning
framework slightly sacrifices the segmentation performance (without significant
difference in any metric of any dataset, p-value > 0.05), with a reward of a much
greater degree of improvement in the classification performance, as we will show
later. Results shown in the penultimate row of Table 2 can be treated as the
upper bound of our FAZ segmentation. Fig. 2 displays representative segmenta-
tion results of the proposed method and four compared models. We also present
two sets of intermediate outputs from BSDA-Net, which clearly show the effec-
tiveness of the regressed soft boundary in assessing model’s uncertainty and the
reconstructed SDM in extracting fovea.

Fig. 2. Visualization results. The upper panel displays segmentation predictions of
compared models and the proposed BSDA-Net. The bottom panel shows representative
segmentation predictions psx, regressed soft boundary pbx, and reconstructed SDM pdx.
Zoom-in for details.

Evaluation of OCTA Classification. As for classification, accuracy and Co-
hen’s kappa are adopted to evaluate all models. The compared methods in-
clude VGG16 (employed in previously proposed OCTA classification works),
ResNet50, ResNeXt50, and the SOTA ResNeSt50 (with and without ImageNet
pretrained). Moreover, we compare with the YNet [20] of a shared-encoder struc-
ture for joint classification and segmentation (based on our reimplementation
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Table 2. Quantitative evaluations of different networks for FAZ segmentation. Joint
learning slightly sacrifices the segmentation performance with no significant difference
in any metric.

Method
OCTA-500 OCTAGON FAZID

Dice↑ Jaccard↑ 95HD↓ ASD↓ Dice↑ Jaccard↑ 95HD↓ ASD↓ Dice↑ Jaccard↑ 95HD↓ ASD↓

UNet [22] (w BN)
94.51
± 6.71

90.16
± 9.23

5.35
± 9.67

1.02
± 1.81

87.71
± 7.09

78.73
± 9.95

7.63
± 12.93

2.28
± 3.01

89.29
± 8.09

81.40
± 10.53

7.65
± 11.48

2.34
± 2.60

UNet++ [32]
94.71
± 6.61

90.53
± 9.42

5.33
± 8.61

0.99
± 1.81

87.86
± 6.75

78.94
± 9.90

6.35
± 9.58

2.05
± 2.33

88.73
± 7.94

80.51
± 10.95

8.26
± 11.92

2.50
± 2.81

PSPNet [30]
91.48
± 6.89

84.87
± 9.29

6.91
± 11.01

1.63
± 2.07

86.87
± 6.69

77.34
± 9.49

6.89
± 10.92

2.18
± 1.98

87.58
± 9.40

78.91
± 12.17

10.04
± 16.94

2.96
± 3.57

DeepLabv3+ [5]
92.35
± 7.33

86.44
± 9.71

6.06
± 7.01

1.34
± 1.49

87.28
± 6.82

78.00
± 9.50

6.65
± 10.39

2.17
± 2.38

88.22
± 8.98

79.82
± 11.57

8.02
± 13.57

2.74
± 4.12

Baseline (E + S)
95.24
± 7.00

91.49
± 9.05

4.52
± 7.20

0.89
± 2.25

87.73
± 7.82

78.84
± 10.24

6.95
± 11.61

2.19
± 2.81

89.89
± 7.16

82.27
± 10.02

7.05
± 10.36

2.20
± 2.57

BSDA (w/o D, C)
95.90
± 4.20

92.40
± 6.71

4.37
± 7.26

0.76
± 1.48

88.30
± 6.32

79.56
± 9.04

6.23
± 9.81

2.00
± 2.02

90.77
± 5.87

83.57
± 8.63

6.52
± 10.15

1.98
± 2.31

BSDA (w/o B, C)
95.84
± 4.40

92.30
± 6.92

4.08
± 5.81

0.72
± 1.20

88.14
± 6.45

79.31
± 9.10

5.94
± 9.63

1.97
± 2.18

90.60
± 7.12

83.43
± 9.57

6.19
± 7.42

1.90
± 2.26

BSDA (w/o C)
96.21
± 3.78

92.92
± 6.14

3.61
± 5.68

0.63
± 1.23

88.64
± 5.89

80.00
± 8.66

5.43
± 6.86

1.80
± 1.26

91.03
± 5.13

83.91
± 7.92

5.85
± 6.05

1.81
± 1.23

BSDA (ours)
96.07
± 4.28

92.72
± 6.82

3.90
± 6.03

0.68
± 1.28

88.37
± 6.03

79.64
± 8.75

5.79
± 8.95

1.92
± 1.96

90.98
± 5.19

83.84
± 8.03

5.67
± 5.53

1.82
± 1.23

Table 3. Classification performance of all methods on the three OCTA datasets.

Method
Pretrained
(ImageNet)

OCTA-500 OCTAGON FAZID
Acc Kappa Acc Kappa Acc Kappa

VGG16 [3,12,25]
- 84.62 64.23 95.31 89.36 66.78 49.35
X 86.53 72.40 96.24 91.55 70.72 55.63

ResNet50 [10]
- 81.59 60.01 90.61 78.23 70.72 55.68
X 89.84 77.88 97.65 94.58 74.67 61.70

ResNeXt50 [28]
- 82.97 62.16 87.79 71.92 70.72 55.78
X 90.11 78.38 96.24 91.29 72.37 58.10

ResNeSt50 [29]
- 89.01 76.62 95.77 90.32 75.00 62.08
X 90.93 80.32 96.71 92.53 75.00 62.08

YNet (ResNeSt50)[20] X 91.76 82.21 96.71 92.53 74.34 61.24
BSDA (w/o B, D) X 92.03 82.67 97.65 94.58 78.62 67.81
BSDA (ours) X 94.23 87.68 99.53 98.92 82.57 73.67

using ResNeSt50 as the encoder), and the ablation structure without branches
B and D. The quantitative results are shown in Table 3, which demonstrates
that our model achieves the best performance and identifies the effectiveness
of FAZ features and the proposed hierarchical feature perception strategy in
boosting deep classification networks. Comparing results listed in the last two
rows of Table 3, there is no doubt that our proposed joint learning strategy
benefits the classification significantly, with only a very mild decrease in the seg-
mentation performance (Table 2). In addition, we display detailed classification
reports, including the precision, recall, F1-score of each disease and the macro
avg, weight avg of each dataset, in Tables A1 to A3 (from our appendix) for
the three datasets. These results establish new SOTA classification baselines for
OCTA images. Across all three datasets, BSDA-Net is found to yield the best
classification results on DR. Even in FAZID, samples misclassified in the dia-
betic category are mainly diabetic non-retinopathy samples. The classification
performance on myopia in the FAZID dataset is relatively inferior (79.68%),
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which partially agrees with existing evidence that FAZ features are relatively
indistinguishable in low-moderate myopia [1,4].

4 Conclusion

This paper presents a novel hierarchical and multi-level boundary shape and
distance aware joint learning (BSDA-Net) framework for FAZ segmentation and
diagnostic classification. Specifically, by constructing a boundary heatmap re-
gression branch and a SDM reconstruction branch, we essentially propose a
soft contour and directional signed distance aware segmentation loss, which is
found to predict more accurate FAZ boundaries and suppress outliers. We also
design a hierarchical and interpretable joint learning strategy to fuse FAZ fea-
tures with those from the classifier. Extensive experiments on three publicly-
accessible OCTA datasets show that our BSDA-Net achieves significantly better
performance than SOTA methods on both segmentation and classification. Col-
lectively, our results demonstrate the potential of OCTA for automated ophthal-
mological and systemic disease assessments and the effectiveness of FAZ features
in boosting deep learning classifiers’ performance.
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Appendix

Table A1. BSDA-Net’s classification results on OCTA-500.

Precision Recall F1-score Support

Normal 95.31 97.21 96.25 251

DR 94.92 87.50 91.06 64

AMD 87.76 87.76 87.76 49

Macro avg 92.66 90.82 91.69

364Weight avg 94.23 94.23 94.20

Accuracy 94.23 Kappa 87.68

Table A2. BSDA-Net’s classification results on OCTAGON.

Precision Recall F1-score Support

Normal 99.31 100 99.65 144

DR 100 98.55 99.27 69

Macro avg 99.66 99.28 99.46

213Weight avg 99.53 99.53 99.53

Accuracy 99.53 Kappa 98.92

Table A3. BSDA-Net’s classification results on FAZID.

Precision Recall F1-score Support

Normal 74.39 69.32 71.77 88

Diabetic 92.93 85.98 89.32 107

Myopic 79.68 89.91 84.48 109

Macro avg 82.33 81.74 81.86

304Weight avg 82.81 82.57 82.50

Accuracy 82.57 Kappa 73.67

Fig.A1. Classification confusion matrixes of BSDA-Net on the three datasets.
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Fig.A2. Visualization results. Representative segmentation predictions psi , regressed
soft boundary pbi , and reconstructed SDM pdi from BSDA-Net. Zoom-in for details.
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7. Dı́az, M., Novo, J., Cutŕın, P., Gómez-Ulla, F., Penedo, M., Ortega, M.: Automatic
segmentation of the foveal avascular zone in ophthalmological OCT-A images. PLoS
One 14(2), e0212364 (2019)

8. Guo, M., Zhao, M., Cheong, A., Dai, H., Lam, A., Zhou, Y.: Automatic quantifica-
tion of superficial foveal avascular zone in optical coherence tomography angiography
implemented with deep learning. Visual Computing for Industry, Biomedicine, and
Art 2(1), 1-9 (2019)

9. Haddouche, A., Adel, M., Rasigni, M., Conrath, J., Bourennane, S.: Detection of
the foveal avascular zone on retinal angiograms using Markov random fields. Digital
Signal Processing 20(1), 149-154 (2010)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778 (2016)

11. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation
from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251-1265 (2009)

12. Le, D., et al.: Transfer learning for automated OCTA detection of diabetic retinopa-
thy. Transl. Vis. Sci. Technol. 9(2), 35-35 (2020)

13. Leitgeb, R.: En face optical coherence tomography: a technology review. Biomed.
Opt. Express 10(5), 2177-2201 (2019)

14. Li, M., et al.: Image projection network: 3d to 2d image segmentation in octa
images. IEEE Trans. Med. Imaging 39(11), 3343-3354 (2020)

15. Li, M., et al.: IPN-V2 and OCTA-500: Methodology and Dataset for Retinal Image
Segmentation. arXiv preprint arXiv:2012.07261 (2020)

16. Li, M., Wang, Y., Ji, Z., Fan, W., Yuan, S., Chen, Q.: Fast and robust fovea
detection framework for OCT images based on foveal avascular zone segmentation.
OSA Continuum 3(3), 528-541 (2020)

17. Linderman, R., Salmon, A., Strampe, M., Russillo, M., Khan, J., Carroll, J.: As-
sessing the accuracy of foveal avascular zone measurements using optical coherence

https://doi.org/10.1007/978-3-030-63419-3_2
https://doi.org/10.1007/978-3-030-63419-3_2
arXiv:2012.07261


BSDA-Net: Boundary Shape and Distance Aware Joint Learning Framework 13

tomography angiography: segmentation and scaling. Transl. Vis. Sci. Technol. 6(3),
16-16 (2017)

18. Lu, Y., et al.: Evaluation of automatically quantified foveal avascular zone metrics
for diagnosis of diabetic retinopathy using optical coherence tomography angiogra-
phy. Investig. Ophthalmol. Vis. Sci. 59(6), 2212-2221 (2018)

19. Ma, Y., et al.: ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset
and New Model. IEEE Trans. Med. Imaging, in press (2020)

20. Mehta, S., et al.: Y-Net: joint segmentation and classification for diagnosis of
breast biopsy images. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 893–901. Springer, Cham (2018). https:

//doi.org/10.1007/978-3-030-00934-2_99

21. Ometto, G., Montesano, G., Chakravarthy, U., Kee, F., Hogg, R., Crabb, D.: Fast
3-dimensional estimation of the Foveal Avascular Zone from OCTA. arXiv preprint
arXiv:2012.09945 (2020)

22. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: International Conference on Medical image com-
puting and computer-assisted intervention. pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4_28

23. Salles, M., Kvanta, A., Amrén, U., Epstein, D.: Optical coherence tomography
angiography in central retinal vein occlusion: correlation between the foveal avascu-
lar zone and visual acuity. Investig. Ophthalmol. Vis. Sci. 57(9), OCT242-OCT246
(2016)

24. Silva, A., et al.: Segmentation of foveal avascular zone of the retina based on
morphological alternating sequential filtering. In: Proceedings of the IEEE 28th
International Symposium on Computer-Based Medical Systems, pp. 38–43 (2015)

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

26. Tan, C., et al.: Deep multi-task and task-specific feature learning network for ro-
bust shape preserved organ segmentation. In: IEEE International Symposium on
Biomedical Imaging, pp. 1221–1224 (2018)

27. Wijnen, K., et al.: Automated lesion detection by regressing intensity-based dis-
tance with a neural network. In: International Conference on Medical image com-
puting and computer-assisted intervention. pp. 234–242. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32251-9_26

28. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500 (2017)

29. Zhang, H., et al.: Resnest: Split-attention networks. arXiv preprint arXiv:2004.

08955 (2020)
30. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:

Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2881–2890 (2017)

31. Zheng, Y., Gandhi, J., Stangos, A., Campa, C., Broadbent, D., Harding, S.: Au-
tomated segmentation of foveal avascular zone in fundus fluorescein angiography.
Investig. Ophthalmol. Vis. Sci. 51(7), 3653-3659 (2010)

32. Zhou, Z., Siddiquee, M., Tajbakhsh, N., Liang, J.: Unet++: Redesigning skip con-
nections to exploit multiscale features in image segmentation. IEEE Trans. Med.
Imaging 39(6), 1856-1867 (2019)

https://doi.org/10.1007/978-3-030-00934-2_99
https://doi.org/10.1007/978-3-030-00934-2_99
arXiv:2012.09945
https://doi.org/10.1007/978-3-319-24574-4_28
arXiv:1409.1556
https://doi.org/10.1007/978-3-030-32251-9_26
arXiv:2004.08955
arXiv:2004.08955

	BSDA-Net: A Boundary Shape and Distance Aware Joint Learning Framework for Segmenting and Classifying OCTA Images

