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Abstract. Lymph node station (LNS) delineation from computed to-
mography (CT) scans is an indispensable step in radiation oncology
workflow. High inter-user variabilities across oncologists and prohibitive
laboring costs motivated the automated approach. Previous works ex-
ploit anatomical priors to infer LNS based on predefined ad-hoc mar-
gins. However, without the voxel-level supervision, the performance is
severely limited. LNS is highly context-dependent—LNS boundaries are
constrained by anatomical organs—we formulate it as a deep spatial and
contextual parsing problem via encoded anatomical organs. This permits
the deep network to better learn from both CT appearance and organ
context. We develop a stratified referencing organ segmentation protocol
that divides the organs into anchor and non-anchor categories and uses
the former’s predictions to guide the later segmentation. We further de-
velop an auto-search module to identify the key organs that opt for the
optimal LNS parsing performance. Extensive four-fold cross-validation
experiments on a dataset of 98 esophageal cancer patients (with the
most comprehensive set of 12 LNSs + 22 organs in thoracic region to
date) are conducted. Our LNS parsing model produces significant per-
formance improvements, with an average Dice score of 81.1% ± 6.1%,
which is 5.0% and 19.2% higher over the pure CT-based deep model and
the previous representative approach, respectively.

1 Introduction

Cancers in thoracic region are the most common cancers worldwide [17] and sig-
nificant proportions of patients are diagnosed at late stages involved with lymph
node (LN) metastasis. The treatment protocol is a sophisticated combination
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Fig. 1: An illustration of LNS and key referencing organs. The top row illustrates the
auto-searched top-6 key referencing organs; the bottom row depicts the 12 LNSs.

of surgical resection and chemotherapy and/or radiotherapy [5]. Assessment of
involved LNs [1, 21] and accurate labeling their corresponding stations are essen-
tial for the treatment selection and planning. For example, in radiation therapy,
the delineation accuracy of gross tumor volume (GTV) and clinical target vol-
ume (CTV) are the two most critical factors impacting the patient outcome.
For CTV delineation, areas containing metastasis lymph nodes (LNs) should be
included to sufficiently cover the sub-clinical disease regions [2]. One strategy to
outline the sub-clinical disease region is to include the lymph node station (LNS)
that containing the metastasized LNs [14, 19]. Thoracic LNS is determined ac-
cording to the text definitions of International Association for the Study of Lung
Cancer (IASLC) [15]. The delineation of LNS in the current clinical workflow
is predominantly a manual process using computed tomography (CT) images.
Visual assessment and manual delineation is a challenging and time-consuming
task even for experienced physicians, since converting text definitions of IASLC
to precise 3D voxel-wise annotations can be error prone leading to large intra-
and inter-user variability [2].

Deep convolutional neural networks (CNNs) have made remarkable progress
in segmenting organs and tumors in medical imaging [4, 7–9, 18, 20]. Only a
handful of non-deep learning studies have tackled the automated LNS segmen-
tation [3, 11, 13, 16]. A LNS atlas was established using deformable registra-
tion [3]. Predefined margins from manually selected organs, such as the aorta,
trachea, and vessels, were applied to infer LNSs [11], which was not able to ac-
curately adapt to individual subject. Other methods [13, 16] built fuzzy models
to directly parse the LNS or learn the relative positions between LNS and some
referencing organs. Average location errors ranging from 6.9mm to 34.2mm were
reported using 22 test cases in [13], while an average Dice score (DSC) of 66.0%
for 10 LNSs in 5 patients was observed in [16].

In this work, we propose the DeepStationing – an anatomical context encoded
deep LNS parsing framework with key organ auto-search. We first segment a
comprehensive set of 22 chest organs related to the description of LNS according
to IASLC guideline. As inspired by [4], the 22 organs are stratified into the anchor
or non-anchor categories. The predictions of the former category are exploited
to guide and boost the segmentation performance of the later category. Next,
CT image and referencing organ predictions are combined as different input



DeepStationing: Thoracic Lymph Node Station Parsing in CT 3

C

C

nnU-Net

Anchor Segm

N

nnU-Net

C

Strati�ed Chest Organ Segmentation

LNS Segm

nnU-Net

Key 

Referencing

Organ 

Auto-search

Anatomical Context Encoded LNS Parsing

Fig. 2: Overall workflow of our DeepStationing, which consists of stratified chest organ
segmentation and anatomical context encoded LNS parsing with key organ auto-search.

channels to the LNS parsing module. The 22 referencing organs are identified by
human experts. However, relevant but different from the human process, CNN
may require a particular set of referencing organs (key organs) that can opt
for optimal performance. Therefore, we automatically search for the key organs
by applying a channel-weighting to the input organ prediction channels based
on differentiable neural search [10]. The auto-searched final top-6 key organs,
i.e., esophagus, aortic arch, ascending aorta, heart, spine and sternum (shown
in Fig. 1), facilitate our DeepStationing method to achieve high LNS parsing
accuracy. We adopt 3D nnU-Net [6] as our segmentation and parsing backbone.
Extensive 4-fold cross-validation is conducted using a dataset of 98 CT images
with 12 LNS + 22 Organ labels each, as the first of its kind to date. Experimental
results demonstrate that deep model encoded with the spatial context of auto-
searched key organs significantly improves the LNS paring performance, resulting
in an average Dice score (DSC) of 81.1%±6.1%, which is 5.0% and 19.2% higher
over the pure CT-based deep model and the most recent relevant work [11] (from
our re-implementations), respectively.

2 Method

Fig. 2 depicts the overview of our DeepStationing framework, consisting of two
major modularized components: (1) stratified chest organ segmentation; (2) con-
text encoded LNS parsing with key organ auto-search.

2.1 Stratified Chest Organ Segmentation

To provide the spatial context for LNS parsing, we first segment a comprehen-
sive set of 22 chest organs related to the description of LNS. Simultaneously
segmenting a large number of organs increase optimization difficulty leading to
sub-optimal performance. Motivated by [4], we stratify 22 chest organs into
the anchor and non-anchor categories. Anchor organs have high contrast, hence,
it is relatively easy and robust to segment them directly using the deep ap-
pearance features. Anchor organs are first segmented, and their results serve
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as ideal candidates to support the segmentation of other difficult non-anchors.
We use two CNN branches to stratify the anchor and non-anchor organ seg-
mentation. With predicted anchor organs as additional input, the non-anchor
organs are segmented. Assuming N data instances, we denote the training data

as S =
{

Xn, Y
A
n , Y ¬A

n , Y L
n ,

}N

n=1
, where Xn, Y

A
n , Y ¬A

n and Y L
n denote the input

CT and ground-truth masks for the anchor, non-anchor organs and LNS, re-
spectively. Assuming there are CA and C¬A classes for anchor and non-anchor
organs and dropping n for clarity, our organ segmentation module generate the
anchor and non-anchor organ predictions at every voxel location, j, and every
output class, c:

Ŷ A
c (j) = pA

(

Y A(j) = c |X ;WA
)

, ŶA =
[

Ŷ A
1 . . . Ŷ A

CA

]

, (1)

Ŷ ¬A
c (j) = p¬A

(

Y ¬A(j) = c |X, ŶA;W¬A
)

, Ŷ¬A =
[

Ŷ ¬A
1 . . . Ŷ ¬A

C
¬A

]

, (2)

where p(∗)(.) denotes the CNN functions and and Ŷ
(∗)
c for the output segmen-

tation maps. Here, we combine both anchor and non-anchor organ predictions
into an overall prediction map ŶA = ŶA ∪ Ŷ¬A. Predictions are vector valued
3D masks as they provide a pseudo-probability for every class. W(∗) represents
the corresponding CNN parameters.

2.2 Anatomical Context Encoded LNS Parsing

Segmenting LNS by only CT appearance can be error prone, since LNS highly
relies on the spatial context of adjacent anatomical structures. Emulating the
clinical practice of IASLC guidelines, we incorporate the referencing organs into
the training process of LNS parsing. Given CL classes of the LNSs, as illustrated
in Fig. 2, we combine the above organ predictions with CT images to create a

multi-channel input:
[

X, ŶA

]

:

Ŷ L
c (j) = pL

(

Y L(j) = c |X, ŶA;WL
)

, ŶL =
[

Ŷ L
1 . . . Ŷ L

CL

]

. (3)

Thereupon, the LNS parsing module leverages both the CT appearance and the
predicted anatomical structures, implicitly encoding the spatial distributions of
referencing organs during training. Similar to Eq. (1), we have the LNS prediction

in its vector-valued form as ŶL.

Key Organ Auto-search The 22 referencing organs are previously selected
according to the IASLC guideline. Nevertheless for deep learning based LNS
model training, those manually selected organs might not lead to the optimal
performance. Considering the potential variations in organ location and size
distributions, and differences in automated organ segmentation accuracy, we
hypothesize that the deep LNS parsing model would benefit from an automated
reference organ selection process that are tailored to this purpose. Hence, we use
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the differentiable neural search [4] to search the key organs by applying a channel-
weighting strategy to input organ masks. We make the search space continuous
by relaxing the selection of the referencing organs to a Softmax function over the
channel weights of the one-hot organ predictions ŶA. For CL classes, we define
a set of CL learn-able logits for each channel, denoted as αc, ∀c ∈ [1 · · ·CL]. The
channel weight φc for a referencing organ is defined as:

φc =
exp (αc)

∑CL

m=1 exp (αm)
, Φ = [φ1 · · ·φCL

] , (4)

F (Ŷ A

c , φc) = φc · Ŷ
A

c , F (ŶA, Φ) =
[

F (Ŷ A

1 , φ1) · · ·F (Ŷ A

CL
, φCL

)
]

(5)

where Φ denotes the set of channel weights and F (φc, Ŷ
A
c ) denotes the channel-

wise multiplication between the scalar φc and the organ prediction Ŷ A
c . The input

of LNS parsing model becomes
[

X, F (ŶA, Φ)
]

. As the results of the key organ

auto-search, we select the organs with the top-n weights to be the searched n key
organs. In this paper, we heuristically select the n = 6 based on the experimental
results. Last, we train the LNS parsing model using the combination of original
CT images and the auto-selected top-6 key organs’ segmentation predictions.

3 Experimental Results

Dataset.We collected 98 contrast-enhanced venous-phase CT images of patients
with esophageal cancers underwent surgery and/or radiotherapy treatments. A
board-certified radiation oncologist with 15 years of experience annotated each
patient with 3D masks of 12 LNSs, involved LNs (if any), and 22 referencing
organs related to LNS according to IASLC guideline. The 12 annotated LN
stations are: S1 (left + right), S2 (left + right), S3 (anterior + posterior), S4
(left + right), S5, S6, S7, S8. The average CT image size is 512 × 512 × 80
voxels with an average resolution of 0.7×0.7×5.0mm. Extensive four-fold cross-
validation (CV), separated at the patient level, was conducted. We report the
segmentation performance using DSC in percentage, Hausdorff distance (HD)
and average surface distance (ASD) in mm.

Implementation details. We adopt the nnU-Net [6] with DSC+CE losses as
our backbone for all experiments due to its high accuracy on many medical image
segmentation tasks. The nnU-Net has been proposed to automatically adapt
different preprocessing strategies (i.e., the training image patch size, resolution,
and learning rate) to a given 3D medical imaging dataset. We use the default
nnU-Net settings for our model training. The total training epochs is 1000.
For the organ auto-search parameter αc, we first fix the αc for 200 epochs and
alternatively update the αc and the network weights for another 800 epochs.
The rest settings are the same as the default nnU-Net setup. We implemented
our DeepStationing method in PyTorch, and an NVIDIA Quadro RTX 8000 was
used for training. The average training/inference time is 2.5 GPU days or 3 mins.
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Table 1: Mean DSCs, HDs, and ASDs, and their standard deviations of LNS parsing
performance using: (1) only CT appearance; (2) CT+all 22 referencing organ ground-
truth masks; (3) CT+all 22 referencing organ predicted masks; (4) CT+auto-searched
6 referencing organ predicted masks. The best performance scores are shown in bold.

LNS CT Only
+22

Organ GT
+22

Organ Pred
+6 Searched
Organ Pred

DSC

S1 Left 78.1 ± 6.8 84.3 ± 4.5 82.3 ± 4.6 85.1 ± 4.0

S1 Right 76.8 ± 5.0 84.3 ± 3.4 82.2 ± 3.4 85.0 ± 4.1

S2 Left 66.9 ± 11.4 75.8 ± 9.0 73.7 ± 8.9 76.1 ± 8.2

S2 Right 70.7 ± 8.5 74.8 ± 7.6 72.8 ± 7.6 77.5 ± 6.4

S3 Anterior 77.4 ± 4.9 79.8 ± 5.6 79.7 ± 5.6 81.5 ± 4.9

S3 Posterior 84.6 ± 3.1 87.9 ± 2.8 87.8 ± 2.9 88.6 ± 2.7

S4 Left 74.1 ± 8.2 77.0 ± 8.9 76.9 ± 8.9 77.9 ± 9.4

S4 Right 73.8 ± 8.9 74.9 ± 9.3 74.9 ± 9.4 76.7 ± 8.3

S5 72.6 ± 6.7 73.2 ± 7.4 73.2 ± 7.4 77.9 ± 8.0

S6 72.4 ± 5.7 74.9 ± 4.4 74.8 ± 4.5 75.7 ± 4.3

S7 85.0 ± 5.1 86.6 ± 5.8 86.6 ± 5.8 88.0 ± 6.1

S8 80.9 ± 6.1 84.0 ± 5.9 82.0 ± 5.9 84.3 ± 6.3

Average 76.1 ± 6.7 79.8 ± 6.2 78.9 ± 6.3 81.1 ± 6.1

HD

S1 Left 11.9 ± 3.2 12.3 ± 6.0 27.6 ± 38.8 10.3 ± 4.1

S1 Right 18.0 ± 29.3 10.6 ± 2.6 61.1 ± 97.6 9.7 ± 1.8

S2 Left 13.3 ± 9.2 9.7 ± 3.1 35.6 ± 76.9 9.2 ± 3.1

S2 Right 36.3 ± 61.7 10.8 ± 3.0 10.8 ± 3.0 9.5 ± 3.2

S3 Anterior 41.7 ± 62.4 13.5 ± 4.9 50.4 ± 79.1 12.2 ± 4.3

S3 Posterior 9.1 ± 3.3 8.0 ± 2.0 18.0 ± 30.9 7.6 ± 1.9

S4 Left 11.5 ± 4.9 14.7 ± 22.2 14.5 ± 22.2 9.8 ± 3.8

S4 Right 32.8 ± 69.7 9.8 ± 3.5 16.2 ± 21.5 9.8 ± 3.6

S5 36.4 ± 56.4 20.5 ± 35.2 38.1 ± 60.3 10.9 ± 4.0

S6 19.2 ± 30.6 8.6 ± 2.5 52.5 ± 85.3 8.5 ± 2.7

S7 26.3 ± 42.6 9.6 ± 3.7 9.6 ± 3.7 9.5 ± 3.5

S8 14.5 ± 6.0 13.6 ± 5.7 13.1 ± 5.8 12.2 ± 6.2

Average 22.6 ± 31.6 11.8 ± 7.9 28.9 ± 43.8 9.9 ± 3.5

ASD

S1 Left 1.6 ± 0.8 1.3 ± 0.6 1.4 ± 1.0 0.9 ± 0.5

S1 Right 1.8 ± 0.8 1.2 ± 0.5 1.6 ± 1.1 0.9 ± 0.5

S2 Left 1.4 ± 0.8 1.0 ± 0.6 1.3 ± 0.8 0.8 ± 0.6

S2 Right 1.5 ± 0.8 1.3 ± 0.7 1.3 ± 0.7 1.0 ± 0.7

S3 Anterior 1.0 ± 0.8 0.7 ± 0.4 0.9 ± 0.9 0.6 ± 0.4

S3 Posterior 0.9 ± 0.5 0.6 ± 0.3 0.8 ± 1.1 0.6 ± 0.4

S4 Left 1.0 ± 0.6 1.4 ± 2.7 1.2 ± 1.6 0.8 ± 0.6

S4 Right 1.5 ± 1.0 1.4 ± 1.0 1.5 ± 1.0 1.3 ± 1.0

S5 1.3 ± 0.6 1.9 ± 3.4 1.6 ± 1.8 1.0 ± 0.5

S6 0.8 ± 0.4 0.7 ± 0.3 1.0 ± 1.1 0.6 ± 0.3

S7 0.9 ± 0.7 0.8 ± 0.6 0.8 ± 0.6 0.7 ± 0.6

S8 1.7 ± 1.2 1.6 ± 1.1 1.6 ± 1.1 1.3 ± 1.3

Average 1.3 ± 0.7 1.1 ± 1.0 1.3 ± 1.1 0.9 ± 0.6

Quantitative Results. We first evaluate the performance of our stratified ref-
erencing organ segmentation. The average DSC, HD and ASD for anchor and
nonanchor organs are 90.0±4.3%, 16.0±18.0mm, 1.2±1.1mm, and 82.1±6.0%,
19.4± 15.0mm, 1.2± 1.4mm, respectively. We also train a model by segmenting



DeepStationing: Thoracic Lymph Node Station Parsing in CT 7

all organs using only one nnUNet. The average DSCs of the anchor, non-anchor,
and all organs are 86.4± 5.1%, 72.7± 8.7%, and 80.8± 7.06%, which are 3.6%,
9.4%, and 5.7% less than the stratified version, respectively. The stratified organ
segmentation demonstrates high accuracy, which provides robust organ predic-
tions for the subsequent LNS parsing model.
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Fig. 3: (a) Examples of LNS parsing results using different setups. For better com-
parison, red arrows are used to depict visual improvements. (b) The bottom charts
demonstrate the performance using different numbers of searched referencing organs.

Table 1 outlines the quantitative comparisons on different deep LNS parsing
setups. Columns 1 to 3 show the results using: 1) only CT images, 2) CT +
all 22 ground-truth organ masks, and 3) CT + all 22 predicted organ masks.
Using only CT images, LNS parsing exhibits lowest performance with an aver-
age DSC of 76.1% and HD of 22.6mm. E.g., distant false predictions is observed
in the first image 2nd row of Fig. 3 and false-positive S3 posterior is predicted
(in pink) between the S1 and S2. When adding 22 ground-truth organ masks as
spatial context, both DSC and HD show remarked improvements: from 76.1% to
79.8% in DSC and 22.6mm to 11.8mm in HD. This verifies the importance and
effectiveness of referencing organs in inferring LNS boundaries. However, when
predicted masks of the 22 organs are used (the real testing condition), it has a
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significant increase in HD from 11.8mm to 28.9mm as compared to that using
ground truth organ masks. This shows the necessity to select the key organs
suited for the deep parsing model. Finally, using the top-6 auto-searched refer-
encing organs, our DeepStationing model achieves the best performance reaching
81.1 ± 6.1% DSC, 9.9 ± 3.5mm HD and 0.9 ± 0.6mm ASD. Qualitative
examples are shown in Fig. 3 illustrating these performance improvements.

We auto-search for the organs that are tailored to optimize the LNS parsing
performance. Using an interval of 3, we train 7 additional LNS parsing models,
by including the top-3 up to top-21 organs. The auto-searched ranking of the
22 organs is listed as follows: esophagus, aortic arch, ascending aorta, heart,
spine, sternum, V.BCV (R+L), V.pulmonary, descending aorta, V.IJV (R+L),
A.CCA (R+L), V.SVC, A.pulmonary, V.azygos, bronchus (R+L), lung (R+L),
trachea, where ‘A’ and ‘V’ denote the Artery and Vein. The quantitative LNS
parsing results in selecting the top-n organs are illustrated in the bottom charts
of Fig. 3. With more organs included gradually, the DSC first improves, then
slightly drops after having more than top-6 organs. The performance later wit-
nesses a sharp drop after including more than top-9 organs, then becoming steady
when we include more than top-15 organs. This demonstrates that deep LNS par-
ing model does not need a complete set of referencing organs to capture the LNS
boundaries. We choose the top-6 as our final key organs based on experimental
results. We notice that the trachea, lungs, and bronchus are surprisingly ranked
in the bottom-5 of the auto-search, although previous works [11, 12] manually
selected them for the LNS parsing. The assumed reasons are that those organs
are usually filled with air and have clear boundaries while LNS does not include
air or air-filled organs. With the help of the other found key organs, it is rela-
tively straightforward for the LNS parsing CNN to distinguish them and reject
the false-positives located in those air-filled organs. We further include 6 ablation
studies and segment LNS using: (1) randomly selected 6 organs; (2) top-6 organs
with best organ segmentation accuracy; (3) anchor organs; (4) recommended 6
organs from the senior oncologists; (5) searched 6 organs predictions from less
accurate non-stratified organ segmentor; (6) searched 6 organs GT. The ran-
domly selected 6 organs are: V.BCV (L), V.pulmonary, V.IJV (R), heart, spine,
trachea; The 6 organs with the best segmentation accuracy are: lungs (R+L),
descending aorta, heart, trachea, spine; Oncologists recommended 6 organs are:
trachea, aortic arch, spine, lungs (R+L), descending aorta; The DSCs for se-
tups (1-6) are 77.2%, 78.2%, 78.6%, 79.0%, 80.2%, 81.7%; the HDs are 19.3mm,
11.8mm, 12.4mm, 11.0mm, 10.1mm, 8.6mm, respectively. In comparison to the
LNS predictions using only CT images, the ablation studies demonstrate that
using the referencing organ for LNS segmentation is the key contributor for the
performance gain, and the selection and the quality of supporting organs are the
main factors for the performance boost, e.g., our main results of the setups (5)
and (6) show that better searched-organ delineation can help get superior LNS
segmentation performance.

Comparison to previous work. We compare the DeepStationing to the pre-
vious most relevant approach [11] that exploits heuristically pre-defined spatial
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margins for LNS inference. The DeepStationing outperforms [11] by 19.2% in
DSC, 30.2mm in HD, and 5.2mm in ASD. For the ease of comparison, sim-
ilar to [11], we also merge our LNSs into four LN zones, i.e., supraclavicular
(S1), superior (S2, S3, and S4), aortic (S5 and S6) and inferior (S7 and S8)
zones, and calculate the accuracy of LN instances that are correctly located in
the predicted zones. DeepStationing achieves an average accuracy of 96.5%, or
13.3% absolutely superior than [11] in LN instance counting accuracy. We tested
additionally 2 backbone networks: 3D PHNN (3D UNet with a light-weighted
decoding path) and 2D UNet. The DSCs of 3D PHNN and 2D UNet are 79.5%
and 78.8%, respectively. The assumed reason for the performance drop might be
the loss of the boundary precision/3D information.

4 Conclusion

In this paper, we propose DeepStationing as a novel framework that performs
key organ auto-search based LNS parsing on contrasted CT images. Emulating
the clinical practices, we segment the referencing organs in thoracic region and
use the segmentation results to guide LNS parsing. Different from employing
the key organs directly suggested by oncologists, we search for the key organs
automatically as a neural architecture search problem that can opt for optimal
performance. Evaluated using a most comprehensive LNS dataset, DeepStation-
ing method outperforms previous most relevant approach by a significant quan-
titative margin of 19.2% in DSC, and is coherent to clinical explanation. This
work is an important step towards reliable and automated LNS segmentation.
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