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Abstract. Parkinson’s Disease (PD) is a chronic and progressive neuro-
logical disorder that results in rigidity, tremors and postural instability.
There is no definite medical test to diagnose PD and diagnosis is mostly
a clinical exercise. Although guidelines exist, about 10-30% of the pa-
tients are wrongly diagnosed with PD. Hence, there is a need for an
accurate, unbiased and fast method for diagnosis. In this study, we pro-
pose LPGNet, a fast and accurate method to diagnose PD from gait.
LPGNet uses Linear Prediction Residuals (LPR) to extract discriminat-
ing patterns from gait recordings and then uses a 1D convolution neural
network with depth-wise separable convolutions to perform diagnosis.
LPGNet achieves an AUC of 0.91 with a 21 times speedup and about
99% lesser parameters in the model compared to the state of the art. We
also undertake an analysis of various cross-validation strategies used in
literature in PD diagnosis from gait and find that most methods are af-
fected by some form of data leakage between various folds which leads to
unnecessarily large models and inflated performance due to overfitting.
The analysis clears the path for future works in correctly evaluating their
methods.

Keywords: Parkinson’s Diagnosis · Gait · Model Evaluation · Convolu-
tional Neural Networks · Linear Prediction Analysis · Signal Processing

1 Introduction

Parkinson’s Disease (PD) is a neurological disorder that affects neurons in the
brain responsible for motor control which leads to tremors, bradykinesia (slowed
movement), limb rigidity, balance and gait problems. It is the second most
common neurological disorder after Alzheimer’s, affects about 10 million peo-
ple worldwide[4] and is considered a chronic disease. Although the condition is
not fatal, disease complications due to symptoms can be serious as they start
gradually and develop over time. The Centers for Disease Control and Preven-
tion (CDC) rates complications from PD as the 14th largest cause of death in
the United States of America[16]. Unfortunately, the cause of the condition is
not yet known and there is no known cure for treating the condition.

To this day there is no definite medical test to diagnose PD and diagnosis
is still a clinical exercise[14,2] where an expert draws a conclusion from medical

ar
X

iv
:2

10
7.

12
87

8v
1 

 [
ee

ss
.I

V
] 

 9
 J

ul
 2

02
1



2 Alle et al.

history, symptoms observed, and a neurological examination of a subject. Slow
and gradual onset of symptoms and a possibility of human error make diagnosis
inaccurate. About 10-30% of the patients initially diagnosed with PD are later
diagnosed differently[2,15]. Although there is no known cure for treating the
disorder, several therapies[10,14] exist that have shown promise to improve the
quality of life of affected patients and reduce severe complications. Development
of a fast, standardized, and accurate method for diagnosis of PD is expected to
help the lives of affected patients.

Machine learning and statistical methods have shown promise in diagnosing
various medical conditions in recent years. Several attempts have been made to
use machine learning to build models to diagnose PD from various modalities
like speech[11,20], handwriting patterns[7,17], gait patterns[12,19], etc. Although
speech and handwriting based models perform well, they have a problem of large
variability between demographics as they are not as universal as gait. Hence we
believe that gait is the modality to look forward to, to build generalizable models
for Parkinson’s diagnosis. Few recent works using deep learning methods show
good performance in diagnosis Parkinson’s from gait. Zhao et al.[23] use a hybrid
CNN, LSTM model to achieve 98.6% accuracy, Maachi et al.[5] use a 1D CNN to
achieve 98.7% accuracy, Xia et al.[21] use a deep attention based neural network
to achieve 99.07% accuracy. Although all the works mentioned use some form
of K-fold cross-validation to evaluate the performance of the model they build,
there are a few significant differences in the methods used to generate cross-
validation folds, making it difficult to compare performance reported in different
studies.

We propose LPGNet (Linear Prediction residual based Gait classification
Network) a deep learning based model that diagnoses PD from gait with good
accuracy while being fast and small enough to be used in embedded systems to
enable the method to be cheap and widely accessible. The secondary contribution
is that we analyze and compare various methods for obtaining cross-validation
folds (train-test splits) used in current literature to check them for data leakage
and to gain clarity on how to correctly evaluate the model we build. The code for
all the experiments discussed is made public to ensure reproducibility for future
research1.

2 Materials and Methods

2.1 Dataset

We use a publicly available dataset[8] that is a collection of data collected from
three different studies[6,22,9]. The dataset consists of 306 gait recordings from 93
patients with PD and 73 healthy control subjects. Each recording is a two-minute
long measurement of Vertical Ground Reaction Forces (VGRF) measured under
each foot, sampled at a rate of 100Hz as a subject walks at their usual pace at
ground level. Each recording includes 18 time series signals where 16 of them are

1 https://github.com/devalab/parkinsonsfromgait
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VGRFs measured at 8 points under each foot and the remaining two represent
the total VGRF under each foot. The database includes multiple recordings for
some subjects where they were made to perform an additional task of solving
arithmetic problems while walking.

(a) Normal Gait (b) Parkinsonian Gait

Fig. 1: VGRFs measured from the sensor under the rear part of the right foot for
a period of 4 seconds along with the aligned LPR along with anomalous regions
highlighted in the case of the Parkinsonian gait recording.

2.2 Data-Leakage Experiment

To evaluate different validation strategies mentioned in literature, we create a
holdout test set that is used to measure performance of the best models obtained
from each validation strategy to understand the presence of data leakage. The
test set is made up of all VGRF recordings originating from 20% of the subjects.
A subject level separation is necessary as recordings originating from the same
subject generally are similar. All the recordings are normalized to unit variance.
Each recording is then split into windows of length 100 samples with a 50%
overlap. Each window inherits the class of the source recording and is considered
a separate sample. We then split the windows from the remaining 80% subjects
available into the train and validation sets maintaining a 90:10 split with the
following strategies.

– Window Level: Random 10% of all the available windows make up the
validation set and the remaining 90% make up the train set. This method
represents the validation strategies.[21,23,1]

– Within Recording: Random 10% of windows from each recording make up
the validation set and the remaining 90% windows in each recording make
up the train set. This method represents the validation strategy used by
Maachi et al.[5]

– Subject Level: Windows belonging to 10% of the subjects make up the
validation set and windows belonging to the remaining 90% make up the
train set.
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We use a Convolution Neural Network (CNN) with three 1D convolution
layers with RELU activation followed by a fully connected layer with sigmoid
activation function to evaluate the differences between different validation strate-
gies. The model is trained from scratch for each validation method with binary
cross-entropy loss and L2 regularization. We use early stopping while training
the model and choose the parameters from the epoch that gives the best val-
idation accuracy to evaluate on the test set. We then examine the differences
between the validation and test performance of the model representing each vali-
dation method to draw conclusions. Where ever necessary we use stratified splits
to maintain the ratio of PD and control samples in the train, validation, and
holdout test sets.

Fig. 2: LPGNet (Linear Prediction residual Gait classification Network) pipeline
for Parkinson’s Diagnosis

2.3 Model Pipeline

The prediction pipeline in LPGNet involves 3 main steps which include prepro-
cessing, generating the LPR, and performing diagnosis with a CNN as shown in
Figure 2. The following sections give further details.

Preprocessing Each time series signal (VGRF measured at a point under the
foot) is downsampled to 50 Hz and then normalized to unit variance. To avoid
artifacts while downsampling, the raw signal is filtered with a moving average
filter of order 2.

Linear Prediction Residual: Linear Prediction (LP) is a mathematical oper-
ation where future samples in a time series are estimated as a linear combination
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of p past samples[13] as shown in equation 1. The coefficients a(i) of a linear pre-
dictor model information about the source of the time series. Linear Prediction
Residual (LPR) is the prediction error e(n) (equation 2) that holds information
specific to the time series that LP does not capture. This gives us the ability to
separate normal gait patterns from the VGRF recordings and distill information
specific to Parkinsonian gait in the residual.

x̂(n) = −
p∑

i=1

a(i)x(n− i) (1)

e(n) = x(n) − x̂(n) (2)

The coefficients of the linear predictor are obtained by minimizing the prediction
error e(n) for all samples in the signal which becomes the least-squares solution
of a set of linear equations as mentioned in equation 3.

Xa = b (3)

X =




x(1) 0 · · · 0

x(2) x(1) · · · 0
...

... · · ·
...

x(p + 1) · · · · · · x(1)
...

... · · ·
...

0 · · · 0 x(m)




, a =




1

a(1)
...

a(p)


 , b =




1

0
...

0


 (4)

CNN Architecture: A 3-block 1D convolutional neural network with depth-
wise separable convolutions is used as the clasifier in LPGNet as seen in Figure
2. In depth-wise separable convolutions[3], a normal convolution is replaced with
channel-wise and point-wise convolutions in succession which reduces the com-
putational and parametric complexity of the network while maintaining its pre-
dictive power. They are also less susceptible to overfitting compared to a normal
CNN because of the lesser number of learnable parameters.

Each convolution block contains a separable convolution layer, batch normal-
ization layer, ELU activation followed by a max-pooling operation. The three
blocks are followed by a global average pooling operation which computes the
average over the time dimension resulting in a fixed dimensional vector for the
final fully connected layer with sigmoid activation. Using global average pool-
ing at this level enables the model to accept time series of varying lengths
which in turn enables us to perform one step inference without resorting to
padding/windowing.

Training: Training is done in two steps: Training the linear predictors to find
optimal coefficients to generate the LPR followed by training a 1D-CNN to
perform diagnosis.
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We train a separate linear predictor for each of the 18 time series in a gait
recording. To find the LP coefficients, we concatenate all control gait record-
ings across time with padding equal to the order of the LP and then find the
least-squares solution for each time series. Padding is added to prevent different
recordings from affecting each other in the optimization process. Once we obtain
the coefficients for the linear predictors, we generate LPRs for each of the 306
gait recordings which are then used to train a CNN. LPRs are used to train the
CNN as normal gait characteristics in a subject’s recording are removed when
the predicted time series is subtracted from the original recording and the re-
sulting LPR is more discriminating for classifying between normal and PD. We
use the signal processing toolbox available in Matlab to generate LPRs.

Training the CNN is also done in two steps, the generated LPRs are di-
vided into windows representing 2 seconds maintaining a 50% overlap between
successive windows. Each window is assigned the label of the source recording.
A CNN is then trained to classify these windows. Once the network converges
keeping the weights of the convolution backbone of the network frozen, the fully
connected layer is retrained to classify each two-minute recording at once. The
second training step is necessary to calibrate the last fully connected layer to
changes that might come up due to average pooling over the entire recording.
The ADAM optimizer with its default parameters was used to train the network.
Binary cross-entropy with label smoothing was used as the objective function.

Considering the small size of the dataset, different forms of regularization are
used to control overfitting. We use spatial dropout[18] at the input to the CNN,
followed by dropout at the input to the final logistic layer. L2 regularization on
all learnable parameters along with gradient clipping was used to aid stability
of the training process. We use TensorFlow library to implement and train the
model.

2.4 Evaluation

We use stratified 10-fold cross-validation while maintaining a subject level sep-
aration between the folds to evaluate the performance of the models considered.
We report accuracy, AUC, and F1 scores with the mean and standard deviation
measured over the 10 folds. We also report the number of trainable parameters
and inference time to classify a two-minute recording on a single thread on an
Intel Xeon E5-2640 v4 processor. The inference times reported are an average
of 1000 runs. To enforce the use of a single thread we use the capabilities of the
SLURM workload manager.

3 Results and Discussion

Table 1 summarizes the train, validation, and test performance of models achiev-
ing the best validation performance with each strategy considered (as seen in
Section 2.2). We also report the absolute difference between each model’s perfor-
mance on the validation and test sets to evaluate the degree of overfitting that
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in turn provides insight into the extent of data leakage in the validation strategy
used.

Table 1: Data leakage experiment: Train, Validation and Test set performance of
a baseline CNN for each validation strategy, expressed in the form of percentage
accuracy (loss) to understand the presence of data leakage.

Split Strategy Train Validation Test
Difference

(Validation-Test)

Within Recording 95.9 (0.285) 95.9 (0.284) 74.9 (0.637) 21.0 (0.353)

Window Level 94.6 (0.301) 94.1 (0.308) 74.3 (0.661) 19.8 (0.353)

Subject Level 88.7 (0.387) 74.7 (0.572) 78.8 (0.580) 4.1 (0.008)

The window level and within recording split strategies show very good valida-
tion performance but perform poorly on the hold-out test set where the subject
level split strategy performs the best. The within recording and window level
split strategies show a large drop in performance between validation and test
sets compared to the subject level split strategy. This signifies that these strate-
gies are not good validation methods as it indicates heavy data leakage between
the train and validation sets. Hence a subject level separation between the train
and test folds should be maintained for correctly measuring the performance of
a model when a holdout test set is not available. This explains the extremely
good performance seen in works of Zhao et al.[23], Xia et al.[21], Maachi et al.[5]
despite their models being relatively large for the number of training record-
ings available as large models overfit easily and generally perform very well in
conditions where data leakage exists between the train and test sets.

Table 2: Comparison of various baseline and ablation models

Method AUC F1 Score Accuracy
Inference

Time (ms)
Parameters

LPGNet 91.7± 9.4 93.2± 3.6 90.3± 5.8 9.3ms 4933

Ablation 90.4 ± 8.1 91.2 ± 4.9 87.6 ± 6.7 13.4ms 4735

Baseline 87.6 ± 11.4 88.7 ± 6.9 83.6 ± 9.7 20.6ms 16001

1D-ConvNet[5] 86.7 ± 10.3 88.2 ± 6.8 82.5 ± 10.1 195.1ms 445841

As a baseline, we use the same model used in the data leakage experiment to
represent the performance of a simple CNN. We average the probabilities pre-
dicted at the window level to get the prediction probabilities for a gait recording.
We also compare with the 1D ConvNet model proposed by Maachi et al.[5] when
evaluated with a subject level 10 fold CV used in this work. To analyze the effect
of the LPR we perform an ablation study where we train the proposed model
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with normalized VGRF signals. Table 2 summarizes the performances of vari-
ous methods considered in this study. The proposed LPGNet performs the best
with an AUC of 91.7. It is also the fastest model with an inference time of 9.1
ms (3.7 ms for generating LPR and 5.6 ms for classification), the model is also
considerably smaller than others with just 4,933 parameters (198 coefficients in
18 linear predictors of order 11 and 4,735 parameters in the 1D CNN). The large
reduction in model size can be attributed to the corrected validation strategy
used to evaluate the model while tuning the model architecture. We believe that
the models built by Avasarano et al.[1] with 1.5 million parameters and Maachi
et al.[5] with 445,841 parameters are relatively large as their model validation
strategies were biased towards large models due to data leakage between the
train and validation folds. Additional reduction in model size and inference time
can be attributed to the use of depth-wise separable convolutions that are more
efficient. Faster inference speed can be attributed to the model’s ability to clas-
sify the entire sequence at once which removes the need for breaking the VGRF
recordings into windows and averaging of window level predictions.

Ablation Study: A reduction in performance across the metrics was seen when
using normalized VGRF signals at 100Hz to train the model. Apart from worse
performance, an increase in variation (standard deviation) in accuracy and F1
score between folds is observed. This shows the role of the LPR in improving
the performance and stability of the model. When using the LPR no loss in per-
formance is observed when the VGRFs are sampled at 50Hz, this contributes to
the faster inference compared to the ablation experiment despite LPR generation
taking up additional time.

LPR also provides a level of interpretability into how the model arrives at a
decision as it is the error between modeled normal gait and real gait. A strong
deviation from zero in the LPR signifies a deviation of the subject’s gait from
normal which indicates a higher chance of positive PD diagnosis. It can be seen
in Figure 1b that the deviations are higher in the case of Parkinsonian gait
compared to normal gait. Since LPR has the same temporal resolution as the
VGRF signal, we can identify parts of the gait cycle where a PD subject’s gait
deviates heavily from normal gait. The highlighted areas in the Parkinsonian
gait in Figure 1b point to such areas.

The ability of the proposed LPGNet to identify Parkinsonian gait accurately
while being small and fast opens new avenues for it to be deployed in embedded
systems with limited memory and compute resources which would go a long way
in early diagnosis of Parkinson’s in the developing countries of the world where
clinical experts are not abundant.

4 Conclusion

In this work, we present a novel method LPGNet that uses linear prediction
residual with a 1D CNN to efficiently diagnose Parkinson’s from VGRF record-
ings. The proposed method achieves good discriminative performance with an
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accuracy of 90.3% and an F1 score of 93.2%. The model proposed is also or-
ders of magnitude smaller and faster than methods described in literature. The
proposed linear prediction residual aids in improving the interpretability of the
method by pointing to the positions in gait patterns that deviate from normal.
We also evaluate different validation strategies used in literature and identify the
presence of data leakage and show that a subject level separation is necessary for
correct evaluation of a method. This experiment clears the path for future works
in correctly evaluating their methods by identifying sub-optimal strategies that
are susceptible to data leakage.
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Baseline CNN Architecture

Fig. 1: Baseline CNN Architecture

Hyperparameters Used

LPGNet: The ADAM optimizer with its default parameters was used to train
the network. Binary cross entropy with label smoothing of 0.1 was used as the
objective function. A batch size of 128 and learning rate of 5 × 10−4 is used in
first training step and a batch size of 64 and learning rate of 1 × 10−3 is used in
the second training step. The learning rate was reduced by a factor of 4 when a
plateau was observed.

Baseline: The ADAM optimizer with its default parameters was used to train
the network. Binary cross entropy with label smoothing of 0.1 was used as the
objective function. A batch size of 800 and learning rate of 1 × 10−3 was used to
train the model. The learning rate was reduced by a factor of 4 when a plateau
was observed.

Hardware used for running Experiments

All experiments were conducted on a machine with dual Intel Xeon E5-2640 v4
processors and four GTX-1080ti GPUs
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