Skip to main content

Co-graph Attention Reasoning Based Imaging and Clinical Features Integration for Lymph Node Metastasis Prediction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12905))

Abstract

Lymph node metastasis (LNM) is the most critical prognosis factor in esophageal squamous cell carcinoma (ESCC). Effective and adaptive integration of preoperative CT images and multi-sourced non-imaging clinical factors is a challenging issue. In this work, we propose a graph-based reasoning model to learn new representations from multi-categorical clinical parameters for LNM prediction. Given CT, general, diagnostic, pathological, and hematological clinical information, we firstly propose a graph construction strategy with category-wise contextual attention to embed multi-categorical features as graph node attributes. Secondly, we introduce a co-graph attention layer composed of a conventional graph attention network (con-GAT) and a correlation-based GAT (corr-GAT) to learn new representations. Corr-GAT complements con-GAT by difference-based correlations across image regions in global spectral space. Experimental results of ablation studies and comparison with others over 924 lymph nodes demonstrated improved performance and contributions of our major innovations. Our model has the potential to foster early prognosis and personalized surgery or radiotherapy planning in ESCC patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee, H.N., Kim, J.I., Shin, S.Y., Kim, D.H., Kim, C., Hong, I.K.: Combined CT texture analysis and nodal axial ratio for detection of nodal metastasis in esophageal cancer. Br. J. Radiol. 93, 20190827 (2020)

    Article  Google Scholar 

  2. Cancer Stat Facts: Esophageal Cancer. National Cancer Institute. https://seer.cancer.gov/statfacts/html/esoph.html

  3. Lee, J.Y., et al.: Improved detection of metastatic lymph nodes in oesophageal squamous cell carcinoma by combined interpretation of fluorine-18-fluorodeoxyglucose positron-emission tomography/computed tomography. Cancer Imaging 19, 40 (2019)

    Article  Google Scholar 

  4. Liu, J., Wang, Z., Shao, H., Qu, D., Liu, J., Yao, L.: Improving CT detection sensitivity for nodal metastases in oesophageal cancer with combination of smaller size and lymph node axial ratio. Eur. Radiol. 28(1), 188–195 (2017). https://doi.org/10.1007/s00330-017-4935-4

    Article  Google Scholar 

  5. Foley, K., Christian, A., Fielding, P., Lewis, W., Roberts, S.: Accuracy of contemporary oesophageal cancer lymph node staging with radiological-pathological correlation. J Clin. Radiol. 72, 693-e691 (2017)

    Google Scholar 

  6. Wu, L., et al.: Multiple level CT radiomics features preoperatively predict lymph node metastasis in esophageal cancer: a multicentre retrospective study. Front Oncol 9, 1548 (2019)

    Article  Google Scholar 

  7. Vallieres, M., Freeman, C.R., Skamene, S.R., El Naqa, I.: A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60, 5471–5496 (2015)

    Article  Google Scholar 

  8. Chauhan, G., et al.: Joint modeling of chest radiographs and radiology reports for pulmonary edema assessment. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 529–539. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_51

    Chapter  Google Scholar 

  9. Sharma, A., Vans, E., Shigemizu, D., Boroevich, K.A., Tsunoda, T.: DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture. Sci. Rep. 9, 11399 (2019)

    Article  Google Scholar 

  10. Zhang, K., Zhu, Y., Zhang, W., Zhu, Y.: Cross-modal image sentiment analysis via deep correlation of textual semantic. Knowl.-Based Syst. 216 (2021)

    Google Scholar 

  11. Ye, L., Liu, Z., Wang, Y.: Dual convolutional LSTM network for referring image segmentation. IEEE Trans. Multimedia 22, 3224–3235 (2020)

    Article  Google Scholar 

  12. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  13. Xuan, P., Zhang, Y., Cui, H., Zhang, T., Guo, M., Nakaguchi, T.: Integrating multi-scale neighbouring topologies and cross-modal similarities for drug–protein interaction prediction. Briefings in Bioinf. 119 (2021)

    Google Scholar 

  14. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. Int. Conf. Learn. Rep. (2018)

    Google Scholar 

  15. Mo, S., et al.: Multimodal priors guided segmentation of liver lesions in MRI using mutual information based graph co-attention networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 429–438. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_42

    Chapter  Google Scholar 

  16. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021)

    Article  Google Scholar 

  17. Jin, Q., Meng, Z., Sun, C., Cui, H., Su, R.: RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans. Front. Bioeng. Biotechnol. 8, 1–15 (2020)

    Article  Google Scholar 

  18. Sheng, N., Cui, H., Zhang, T., Xuan, P.: Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA-disease association prediction. Briefings Bioinf. 22 (2020)

    Google Scholar 

  19. Wang, T., Wang, G., Tan, K.E., Tan, D.: Spectral Pyramid Graph Attention Network for Hyperspectral Image Classification. arXiv preprint arXiv:2001.07108 (2020)

  20. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal 53, 197–207 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, H. et al. (2021). Co-graph Attention Reasoning Based Imaging and Clinical Features Integration for Lymph Node Metastasis Prediction. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics