Skip to main content

Predicting Esophageal Fistula Risks Using a Multimodal Self-attention Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Radiotherapy plays a vital role in treating patients with esophageal cancer (EC), whereas potential complications such as esophageal fistula (EF) can be devastating and even life-threatening. Therefore, predicting EF risks prior to radiotherapies for EC patients is crucial for their clinical treatment and quality of life. We propose a novel method of combining thoracic Computerized Tomography (CT) scans and clinical tabular data to improve the prediction of EF risks in EC patients. The multimodal network includes encoders to extract salient features from images and clinical data, respectively. In addition, we devise a self-attention module, named VisText, to uncover the complex relationships and correlations among different features. The associated multimodal features are integrated with clinical features by aggregation to further enhance prediction accuracy. Experimental results indicate that our method classifies EF status for EC patients with an accuracy of 0.8366, F1 score of 0.7337, specificity of 0.9312 and AUC of 0.9119, outperforming other methods in comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirano, H., Boku, N.: The current status of multimodality treatment for unresectable locally advanced esophageal squamous cell carcinoma. Asia Pac J Clin Oncol 14, 291–299 (2018)

    Article  Google Scholar 

  2. Borggreve, A.S., et al.: Surgical treatment of esophageal cancer in the era of multimodality management. Ann. New York Acad. Sci. (2018)

    Google Scholar 

  3. Tsushima, T., et al.: Risk factors for esophageal fistula associated with chemoradiotherapy for locally advanced unresectable esophageal cancer: a supplementary analysis of JCOG0303. Medicine 95 (2016)

    Google Scholar 

  4. Zhang, Y., Li, Z., Zhang, W., Chen, W., Song, Y.: Risk factors for esophageal fistula in patients with locally advanced esophageal carcinoma receiving chemoradiotherapy. Onco Targets Ther 11, 2311–2317 (2018)

    Article  Google Scholar 

  5. Xu, Y., et al.: Development and validation of a risk prediction model for radiotherapy-related esophageal fistula in esophageal cancer. Radiat. Oncol. 14, 181 (2019)

    Article  Google Scholar 

  6. Zhu, C., Wang, S., You, Y., Nie, K., Ji, Y.: Risk factors for esophageal fistula in esophageal cancer patients treated with radiotherapy: a systematic review and meta-analysis. Oncol Res Treat 43, 34–41 (2020)

    Article  Google Scholar 

  7. Cui, H., Xu, Y., Li, W., Wang, L., Duh, H.: Collaborative learning of cross-channel clinical attention for radiotherapy-related esophageal fistula prediction from CT. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 212–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_21

    Chapter  Google Scholar 

  8. Starke, S., et al.: 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma. Sci. Rep. 10, 1–13 (2020)

    Article  Google Scholar 

  9. Wu, Z., Shen, C., Van Den Hengel, A.: Wider or deeper: revisiting the resnet model for visual recognition. Pattern Recogn. 90, 119–133 (2019)

    Article  Google Scholar 

  10. Jin, Q., Meng, Z., Sun, C., Cui, H., Su, R.: RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans. Front. Bioengi. Biotechnol. 8, 1–15 (2020)

    Article  Google Scholar 

  11. Jin, Q., Cui, H., Sun, C., Meng, Z., Su, R.: Free-form tumor synthesis in computed tomography images via richer generative adversarial network. Knowl.-Based Syst. 218, 106753 (2021)

    Google Scholar 

  12. Li, R., et al.: Referring image segmentation via recurrent refinement networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5745–5753 (2018)

    Google Scholar 

  13. Shi, H., Li, H., Meng, F., Wu, Q.: Key-word-aware network for referring expression image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 38–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_3

    Chapter  Google Scholar 

  14. Ye, L., Rochan, M., Liu, Z., Wang, Y.: Cross-modal self-attention network for referring image segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp. 10502–10511 (2019)

    Google Scholar 

  15. Sharma, A., Vans, E., Shigemizu, D., Boroevich, K.A., Tsunoda, T.: DeepInsight: a methodology to transform a non-image data to an image for convolution neural network architecture. Sci. Rep. 9, 1–7 (2019)

    Google Scholar 

  16. Silva, L.A.V., Rohr, K.: Pan-cancer prognosis prediction using multimodal deep learning. In: International Symposium on Biomedical Imaging (ISBI), pp. 568–571. IEEE (2020)

    Google Scholar 

  17. Chauhan, G., et al.: Joint modeling of chest radiographs and radiology reports for pulmonary edema assessment. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 529–539. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_51

    Chapter  Google Scholar 

  18. Yap, J., Yolland, W., Tschandl, P.: Multimodal skin lesion classification using deep learning. Exp. Dermatol. 27, 1261–1267 (2018)

    Article  Google Scholar 

  19. Xu, T., Zhang, H., Huang, X., Zhang, S., Metaxas, D.N.: Multimodal deep learning for cervical dysplasia diagnosis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 115–123. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_14

    Chapter  Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  21. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7794–7803 (2018)

    Google Scholar 

  22. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 125 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guan, Y. et al. (2021). Predicting Esophageal Fistula Risks Using a Multimodal Self-attention Network. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics