Skip to main content

Intracerebral Haemorrhage Growth Prediction Based on Displacement Vector Field and Clinical Metadata

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Intracerebral hemorrhage (ICH) is the deadliest type of stroke. Early prediction of stroke lesion growth is crucial in assisting physicians towards better stroke assessments. Existing stroke lesion prediction methods are mainly for ischemic stroke. In ICH, most methods only focus on whether the hematoma will expand but not how it will develop. This paper explored a new, unknown topic of predicting ICH growth at the image-level based on the baseline non-contrast computerized tomography (NCCT) image and its hematoma mask. We propose a novel end-to-end prediction framework based on the displacement vector fields (DVF) with the following advantages. 1) It can simultaneously predict CT image and hematoma mask at follow-up, providing more clinical assessment references and surgery indication. 2) The DVF regularization enforces a smooth spatial deformation, limiting the degree of the stroke lesion changes and lowering the requirement of large data. 3) A multi-modal fusion module learns high-level associations between global clinical features and spatial image features. Experiments on a multi-center dataset demonstrate improved performance compared to several strong baselines. Detailed ablation experiments are conducted to highlight the contributions of various components.

T. Xiao and H. Zheng—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkus, Z., Kostandy, P., Philbrick, K.A., Erickson, B.J.: Robust brain extraction tool for CT head images. Neurocomputing 392, 189–195 (2020)

    Article  Google Scholar 

  2. An, S.J., Kim, T.J., Yoon, B.W.: Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J. Stroke 19(1), 3 (2017)

    Article  Google Scholar 

  3. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ants). Insight j 2(365), 1–35 (2009)

    Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  5. Bauer, S., Gratz, P.P., Gralla, J., Reyes, M., Wiest, R.: Towards automatic mri volumetry for treatment selection in acute ischemic stroke patients. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1521–1524. IEEE (2014)

    Google Scholar 

  6. Chen, Q., et al.: Clinical-radiomics nomogram for risk estimation of early hematoma expansion after acute intracerebral hemorrhage. Academic radiology (2020)

    Google Scholar 

  7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  8. Hemphill, J.C., III., et al.: Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke 46(7), 2032–2060 (2015)

    Article  Google Scholar 

  9. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2, pp. 2017–2025 (2015)

    Google Scholar 

  10. Johnson, C.O., et al.: Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet Neurology 18(5), 439–458 (2019)

    Article  Google Scholar 

  11. Kemmling, A., et al.: Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization. J. Cerebral Blood Flow Metabolism 35(9), 1397–1405 (2015)

    Article  Google Scholar 

  12. Krishnamurthi, R.V., et al.: Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the global burden of disease study 2010. Lancet Global Health 1(5), e259–e281 (2013)

    Article  Google Scholar 

  13. Li, H., Fan, Y.: Non-rigid image registration using self-supervised fully convolutional networks without training data. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1075–1078. IEEE (2018)

    Google Scholar 

  14. Li, Z., et al.: Hematoma expansion in intracerebral hemorrhage: an update on prediction and treatment. Frontiers Neurol. 11, 702 (2020)

    Article  Google Scholar 

  15. Liu, J., et al.: Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine 43, 454–459 (2019)

    Article  Google Scholar 

  16. McKinley, R., et al.: Fully automated stroke tissue estimation using random forest classifiers (faster). J. Cerebral Blood Flow Metabolism 37(8), 2728–2741 (2017)

    Article  Google Scholar 

  17. Pinto, A., Mckinley, R., Alves, V., Wiest, R., Silva, C.A., Reyes, M.: Stroke lesion outcome prediction based on MRI imaging combined with clinical information. Frontiers Neurol. 9, 1060 (2018)

    Article  Google Scholar 

  18. Pinto, A., Pereira, S., Meier, R., Wiest, R., Alves, V., Reyes, M., Silva, C.A.: Combining unsupervised and supervised learning for predicting the final stroke lesion. Med. Image Anal. 69, 101888 (2021)

    Google Scholar 

  19. Robben, D., et al.: Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning. Med. Image Anal. 59, 101589 (2020)

    Google Scholar 

  20. Rose, S.E., et al.: Mri based diffusion and perfusion predictive model to estimate stroke evolution. Magnetic Resonance Imaging 19(8), 1043–1053 (2001)

    Article  Google Scholar 

  21. Scalzo, F., Hao, Q., Alger, J.R., Hu, X., Liebeskind, D.S.: Regional prediction of tissue fate in acute ischemic stroke. Ann. Biomed. Eng. 40(10), 2177–2187 (2012)

    Article  Google Scholar 

  22. Soltanpour, M., Greiner, R., Boulanger, P., Buck, B.: Ischemic stroke lesion prediction in CT perfusion scans using multiple parallel u-nets following by a pixel-level classifier. In: 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 957–963. IEEE (2019)

    Google Scholar 

  23. Song, Z., et al.: Noncontrast computed tomography-based radiomics analysis in discriminating early hematoma expansion after spontaneous intracerebral hemorrhage. Korean J. Radiol. 21 (2020)

    Google Scholar 

  24. Stier, N., Vincent, N., Liebeskind, D., Scalzo, F.: Deep learning of tissue fate features in acute ischemic stroke. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1316–1321. IEEE (2015)

    Google Scholar 

  25. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-end unsupervised deformable image registration with a convolutional neural network. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 204–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_24

    Chapter  Google Scholar 

  26. Winzeck, S., et al.: Isles 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Frontiers Neurol. 9, 679 (2018)

    Article  Google Scholar 

  27. Yu, Y., et al.: Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Network Open 3(3), e200772–e200772 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Xiao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 35 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, T. et al. (2021). Intracerebral Haemorrhage Growth Prediction Based on Displacement Vector Field and Clinical Metadata. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12905. Springer, Cham. https://doi.org/10.1007/978-3-030-87240-3_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87240-3_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87239-7

  • Online ISBN: 978-3-030-87240-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics