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Abstract. Confounding bias is a crucial problem when applying machine learn-

ing to practice, especially in clinical practice. We consider the problem of learn-

ing representations independent to multiple biases. In literature, this is mostly 

solved by purging the bias information from learned representations. We how-

ever expect this strategy to harm the diversity of information in the representa-

tion, and thus limiting its prospective usage (e.g., interpretation). Therefore, we 

propose to mitigate the bias while keeping almost all information in the latent 

representations, which enables us to observe and interpret them as well. To 

achieve this, we project latent features onto a learned vector direction, and en-

force the independence between biases and projected features rather than all 

learned features. To interpret the mapping between projected features and input 

data, we propose projection-wise disentangling: a sampling and reconstruction 

along the learned vector direction. The proposed method was evaluated on the 

analysis of 3D facial shape and patient characteristics (N=5011). Experiments 

showed that this conceptually simple method achieved state-of-the-art fair pre-

diction performance and interpretability, showing its great potential for clinical 

applications. 

Keywords: Fair representation learning, Disentangled representation learning, 

Interpretability, 3D shape analysis. 

1 Introduction 

Machine learning techniques, especially deep learning, have emerged as a powerful 

tool in many domains. However, its susceptibility to bias present in training datasets 

and tasks poses, brings a new challenge for the practical applicability, i.e., spurious 

performance in the training and evaluation stage with limited generalizability to appli-

cation in new conditions [1]. To mitigate (confounding) bias in data analysis, traditional 

statistic methods use special techniques such as control-matching [2] and stratification 

[3]. However, due to the end-to-end training scheme and the need for large-size training 

data, these techniques are no longer favored by the machine learning field. 

In “Representation Learning” one tries to find representations (i.e., learned fea-

tures, 𝐙) of the data that are related to specific attributes (i.e., the learning target, 𝑡). 
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Especially, a fair representation means it contains no information of sensitive attributes 

(i.e., bias, 𝑠) [8]. Existing methods for fair representation learning can be categorized 

into two types: 1) adversarial training, in which methods are trained to predict the bias 

from the representation, and subsequently minimize the performance of the adversary 

to remove bias information from the representation [4,5,6,7], and 2) variational auto-

encoder (VAE) -based methods [8,9,10,11], which minimize the dependency between 

the latent representation and the bias using Mutual Information (MI) or Maximum 

Mean Discrepancy (MMD) metrics [8,10]. Despite their potential to facilitate fair rep-

resentation, these models are not interpretable, which can limit their applicability in 

clinical practice [12,13]. Moreover, the fairness of these methods is approached by 

purging all bias information from the learned representations (i.e., 𝑀𝐼(𝐙, 𝑠) → 0). This 

strict strategy can reduce the diversity of information in 𝐙 (Fig. A3). 

To address these issues, we propose a novel projection-wise disentangling strategy 

for auto-encoder-based fair and interpretable representation learning. We construct 𝑧𝑝 

as a linear projection of latent features onto a vector direction, and learn the fair repre-

sentation by minimizing the correlation between 𝑧𝑝 and 𝑠, i.e., 𝑀𝐼(𝑧𝑝, 𝑠) → 0. Compared 

with existing strategies of global-constraint 𝑀𝐼(𝐙, 𝑠) → 0, the proposed conditional-con-

straint strategy can maintain the diversity of information in 𝐙 , and thus 1) obtains an 

optimal trade-off between reconstruction quality and fairness, fitting the proposed 

method into semi-supervised extensions; Also, 2) we propose projection-wise disen-

tangling to interpret the disentanglement of correlated attributes; 3) Our method can 

easily handle multiple and continuous biases.  

In this paper, we applied the proposed method to clinical applications of 3D facial 

shape analysis. For epidemiological studies the bias (confounding) problem is crucial, 

because it can create association that is not true, or association that is true, but mislead-

ing, thus leading to wrong diagnosis or therapy strategy. The bias problem becomes 

significant for AI since it has been used more and more for medical data analysis. While 

we applied our framework to 3D facial images due to our clinical interest, the approach 

can be generally used for other type of data. 

 
  (a)                                                                          (b) 

Fig. 1. a) 𝐏 = [𝑝1, 𝑝2, … 𝑝n] represents a vector in latent space (𝑛 = 3).  𝐝 is the latent representa-

tion of a datapoint. 𝐝̅ and 𝐝̅ +  k𝑖  𝐏 show the sampling along 𝐏 in Eq. 6. When sampling along 𝐏, 

𝑧𝑝 changes and this change is correlated to 𝑡 (|𝐶𝑜𝑟𝑟(𝐳𝐩, 𝐭)| is maximized) while independent to 𝑠 

(|𝐶𝑜𝑟𝑟(𝐳𝐩, 𝐬)| is minimized); b) Framework of the proposed method. 
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2 Methods 

2.1 Projecting features onto a Direction in the Latent Space 

A latent space can be viewed as a vector subspace of ℝ𝑛 (𝑛 latent features) with basis 

vectors1 𝑧𝑖 (𝑖 = 1,2…𝑛). Some recent studies show that most attributes (target or bias) 

of the input data have a vector direction that predominantly captures its variability 

[22,23]. We aim to couple a vector direction with the target while being independent to 

the bias. A vector direction in the latent space can be represented by 𝐏 = [𝑝1, 𝑝2, . . . , 𝑝n] 

as a linear combination of the basis vectors (Fig. 1a). Let 𝐃𝐝×𝐧 = [𝐳𝟏
𝐝, 𝐳𝟐

𝐝, … , 𝐳𝐧
𝐝] (𝑑 data-

points) be the latent representations of the input data. For each datapoint, 𝐝 =

[𝑧1, 𝑧2, … , 𝑧𝑛]  is its latent representations, and 𝑧𝑝 = 𝐝  *P/ ||P|| = (𝑝1𝑧1  + 𝑝2𝑧2 +⋯+

𝑝𝑛𝑧𝑛)/ ||P|| can be viewed as a scalar projection of 𝐝 onto vector 𝐏 (Fig 1a). 

The canonical correlation analysis theory suggests that a linear combination (pro-

jection) of multiple variables can have a maximum or minimum linear relationship with 

specific attributes [14]. We thus formulate the linear relationship between 𝐳𝐩 and attrib-

utes as follow: 

𝐳𝐩 = 𝛽0 + 𝛽𝑠𝐬 + 𝛽𝑡𝐭 + ε ,                                                                 (1) 

where 𝐳𝐩
𝐝 is the projections of d datapoints, 𝐬𝐝 denotes a bias and 𝐭𝐝 denotes a target 

with d datapoints, ε is the error term, 𝛽0 is a constant, 𝛽𝑠 and 𝛽𝑡  denote the coefficients 

of 𝐬 and 𝐭.  

Subsequently, we link a vector direction 𝐏 with the target and bias, with the goal 

to estimate a 𝐏 that minimizes |𝛽
𝑠
| (equivalent to minimizing |𝐶𝑜𝑟𝑟(𝐳𝐩, 𝐬)|) while max-

imizing |𝛽𝑡| (equivalent to maximizing |𝐶𝑜𝑟𝑟(𝐳𝐩, 𝐭)|). Here 𝐶𝑜𝑟𝑟(. , . ) is the Pearson cor-

relation coefficient which ranges between [−1, 1].  

To promote a linear relation between 𝐳𝐩 and (𝐭, 𝐬), which is required for effective 

bias minimization (Eq. 1), a correlation loss (Eq. 3) is further proposed. The correla-

tion loss not only estimates 𝐏, but also encourages the encoder to generate 𝐳𝐩 linearly 

correlated to 𝐭 and 𝐬. 

 

2.2 Implementation in the Auto-encoder 

Our projection-wise disentangling method is shown in Fig. 1b. Let 𝐗 be the input data, 

𝐗′ be the reconstructed data; ENC be the encoder, DEC the decoder, and PE the projec-

tion estimator, parameterized by trainable parameters 𝛉𝑒𝑛𝑐 , 𝛉𝑑𝑒𝑐 , and 𝛉𝑝𝑒 , i.e.:𝐙 =

𝐄𝐍𝐂(𝐗   𝛉𝑒𝑛𝑐)  𝐗
′ =  𝐃𝐄𝐂(𝐙   𝛉𝑑𝑒𝑐)  𝐳𝐩 = 𝐏𝐄(𝐙   𝛉𝑝𝑒)   𝛉𝑝𝑒 = 𝐏 = [𝑝1, 𝑝2, . . . , 𝑝n]. 

To extract latent features 𝐙,  𝛉𝑒𝑛𝑐 and 𝛉𝑑𝑒𝑐 can be optimized in an unsupervised way us-

ing a reconstruction loss (𝐿𝑟𝑒𝑐), as quantified by the mean squared error between the 

input data and the reconstructed data: 

  𝐿𝑟𝑒𝑐(𝐗  𝐗
′) = ||𝐗 − 𝐗′||2 .    (2) 

 
1 Non-orthogonal basis vectors. 
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Based on Eq. 1, to estimate  𝛉𝑝𝑒, as well as to optimize 𝛉𝑒𝑛𝑐 and thereby promote the 

linear correlation between 𝐳𝐩 and (𝐬, 𝐭), we propose a correlation loss  (𝐿𝑐𝑜𝑟𝑟): 

  𝐿𝑐𝑜𝑟𝑟(𝐭, 𝐬  𝐳𝐩 ) =  |𝐶𝑜𝑟𝑟(𝐳𝐩, 𝐬)| − 𝜂|𝐶𝑜𝑟𝑟(𝐳𝐩, 𝐭)| ,     (3) 

where 𝜂 can be considered as a Lagrange multiplier to balance the correlations. 

𝐿𝑐𝑜𝑟𝑟 can handle binary and continuous biases. In case 𝑠 is categorical, it can be con-

verted into dummy variables. Besides, it can be easily extended to handle tasks with 

multiple biases 𝐬𝐢
𝐝 (𝑖 = 1,2, …𝑚): 

  𝐿𝑐𝑜𝑟𝑟(𝐭, 𝐬𝟏, 𝐬𝟐, … , 𝐬𝐦  𝐳𝐩) = |𝐶𝑜𝑟𝑟(𝐳𝐩, 𝐬𝟏)| + ⋯+ |𝐶𝑜𝑟𝑟(𝐳𝐩, 𝐬𝐦)| − 𝜂|𝐶𝑜𝑟𝑟(𝐳𝐩, 𝐭)|. (4) 

Combining Eq. 2 and 3, we optimize the proposed framework using a multi-task loss 

function (𝐿𝑗𝑜𝑖𝑛𝑡): 

  𝛉𝑒𝑛𝑐 ,  𝛉𝑑𝑒𝑐 ,  𝛉𝑝𝑒 ← 𝑎𝑟𝑔𝑚𝑖𝑛  𝐿𝑗𝑜𝑖𝑛𝑡 =  𝐿𝑟𝑒𝑐 + 𝜆𝐿𝑐𝑜𝑟𝑟, (5) 

where 𝜆 balances the magnitude of the reconstruction quality and the fairness terms.  

In addition, for applications where (target and bias) attributes are only available 

for part of the data, we provide a semi-supervised implementation of the method to 

fully exploit the data. In particular, for each training batch, we update the parameters 

in two steps: 1) update by 𝐿𝑟𝑒𝑐 based on the unlabelled data (half batch), and 2) update 

by 𝐿𝑗𝑜𝑖𝑛𝑡  based on the labelled data (half batch). A detailed implementation is provided 

in the supplementary file (Algorithm 1). 

 

2.3 Projection-wise Disentangling for Interpretation 

When 𝛉𝑒𝑛𝑐,  𝛉𝑑𝑒𝑐 and  𝛉𝑝𝑒 are determined, for each given input, its fair projection 𝑧𝑝 can 

be estimated and used for fair prediction of 𝑡 with logistic or linear regression (LR), 

i.e.,  𝑡̂ = 𝐿𝑅(𝑧𝑝). To provide insight into the effect of fair representation on feature ex-

traction, we visualize the reconstructed images and establish its correspondence with 

the target attribute 𝑡̂𝑖: 

𝐗𝑖′ = 𝐃𝐄𝐂(𝐝̅ +  k𝑖  𝐏   𝛉𝑑𝑒𝑐)  , and 

                                                𝑡̂𝑖 = 𝐿𝑅(𝐏𝐄(𝐝̅ +  k𝑖  𝐏   𝛉𝑝𝑒) ) , 𝑖 = 1,2…ℎ  , (6) 

where  𝐗𝑖′ is the reconstructed image sampled along the direction 𝐏 = [𝑝1, 𝑝2, . . . , 𝑝n] in 

the latent space (Fig. 1a), namely the projection-wise disentangling. 𝐝̅ = [𝑑̅1, 𝑑̅2, . . . , 𝑑̅𝑛] 

denotes the mean latent representations of datapoints over the testing set, representing 

a reference point for the sampling.  k𝑖 is a self-defined parameter to control the step of 

the sampling.  
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3 Experiments 

3.1 Dataset and Tasks 

We applied the proposed method to analyzing how the facial shape is related to patient 

characteristics and clinical parameters.  

The data used in this work is from a multi-ethnic population-based cohort study 

[24]. We included 9-year-old children that underwent raw 3D facial shape imaging with 

a 3dMD camera system [15]. We built the raw data into a template-based dataset fol-

lowing Booth’s procedures [16]. Additionally, extensive phenotyping was performed 

regarding gender, BMI, height, ethnicity, low to moderate maternal alcohol exposure 

(i.e., drinking during pregnancy), maternal age and maternal smoking (during preg-

nancy). The binary phenotypes were digitalized. Gender: 1 for female and 0 for male; 

Ethnicity: 1 for Western and 0 for non-Western; Maternal alcohol exposure: 1 for ex-

posed and 0 for non-exposed; Maternal smoking: 1 for exposed and 0 for non-exposed. 

The first experiment was designed to extract features only related to the target and 

independent to defined biases. We therefore investigated the relation between basic 

characteristics (gender, height and BMI) [25]. When predicting one of the attributes, 

the other two were considered as biases. The number of labelled samples for this ex-

periment was 4992. 

In the second experiment we evaluate the applicability of the method in a clinical 

practice setting. Low to moderate maternal alcohol consumption during pregnancy 

could have effects on children’s facial shape [17]. We aim to predict if a child was 

exposed or not, and to explain which part of the face is affected. As suggested by [17], 

gender, ethnicity, BMI, maternal age and smoking were considered as biases in this 

task. For this experiment we had access to 1515 labelled samples (760 non-exposed and 

755 exposed) and 3496 missing-label samples. The missing-label samples were only 

involved in the semi-supervised learning settings of our method. 

Details about the data characteristic of the two experiments can be found in Fig. 

A4 and Table A1 in the supplementary files. 

 

3.2 Implementation details 

For this 3D facial morphology analysis, we implemented the proposed method using a 

3D graph convolution network based on Gong’s work [18], which was originally de-

signed for unsupervised 3D shape reconstruction. Correlation (Eq. 3) was computed on 

batch level. For the correlation term (Eq.3), to minimize |𝐶𝑜𝑟𝑟(𝐳𝐩, 𝐬)| we set 𝜂 to 0.5; 

for the joint loss function (Eq. 5), 𝐿𝑟𝑒𝑐 and 𝐿𝑐𝑜𝑟𝑟 were equally weighted (𝜆 = 1). The 

training stopped after 600 epochs. For all experiments, the batch size was 64. The num-

ber of latent features was 32 for the first experiment, and 64 for the second. 

The proposed method was compared with the following state-of-the-art models: 

• 3D graph autoencoders (3dAE) [18]: An unsupervised model for 3D shape recon-

struction, which serves as a baseline reconstruction method without any restriction on 

latent features, i.e., does not support fair representation learning. 
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• VAE-regression (VAE-reg) [19]: A supervised VAE model for interpretable predic-

tion, but unable to handle the bias during training. After training, it is able to reconstruct 

a list of images by taking as input a list of corresponding 𝑡. 

• VFAE-MI [8]: A supervised VAE-based method for fair representation using MMD 

loss. Since MMD is not applicable to multiple or continuous biases, we replaced it by 

MI loss [21], which is considered to be equivalent or better than the MMD loss in some 

applications [11].  

• BR-Net [7]: A supervised adversarial-training-based method, which uses statistical 

correlation metric as the adversarial loss rather than the commonly used cross-entropy 

or MSE losses. The original method was designed to handle single bias only. As the 

authors suggested [20], we adapted the method to handle multiple biases by adding one 

more BP network for each additional bias.  
 
3.3 Evaluation Metrics 

In this paper, a fair prediction means the prediction 𝑡̂ is unbiased by 𝑠; Fairness in dis-

entanglement is to disentangle facial features related to the target but not confounded 

by bias. 

Prediction results were evaluated on two aspects: the prediction accuracy and fair-

ness. For binary prediction, the accuracy was quantified by the area under the receiver 

operating characteristic curve (AUC); for prediction of continuous variables, the root 

mean square error (R-MSE) was measured. The fairness of the prediction was quanti-

fied by |𝐶𝑜𝑟𝑟(𝐭̂, 𝐬𝐢)| (simplified as |𝐶𝑜𝑟𝑟(𝐬𝐢)|) in the range of [0,1], which measures to 

what extent the prediction is biased by the bias. In Table 1-2 we added ‘+’ or ‘-’ for 

|𝐶𝑜𝑟𝑟(𝐬𝐢)|, in order to tell if there is an overestimation (+) or underestimation (-) in the 

prediction when given a larger 𝑠𝑖. For autoencoder-based methods, the reconstruction 

error (Rec error) was quantified by mean 𝐿1 distance. All results were based on 5-fold 

cross-validation. 

        Since only VAE-reg [19] is interpretable, the proposed method is compared with 

it in terms of interpretability. To qualitatively evaluate the interpretation performance, 

we provide ten frames of faces reconstructed by Eq. 6 (Fig. A2), and the corresponding 

difference heatmap between the first and the last frame. For each task,  k𝑖 in Eq. 6 was 

adjusted to control the range of 𝑡̂𝑖 to be the same as that of VAE-reg [19]. 

4 Results 

4.1 Phenotype prediction for gender, BMI, and height 

Fair Prediction. Compared to other fair methods, our method overall obtained the best 

fair prediction accuracy (R-MSE and AUC), while controlling the biases information 

at the lowest level (|𝐶𝑜𝑟𝑟(𝐬𝐢)|) (Table 1). Compared with VFAE-MI, the proposed 

method showed much better reconstruction quality, with similar performance to 3dAE.  

In addition, we observed a more robust training procedure of the proposed method than 

the compared VAE- and adversarial-based methods (Fig. A1 in supplementary).  
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 Table 1. Fair prediction of gender, BMI, and height. Column X shows the correlation between 

the ground truth 𝐭 and the biases 𝐬𝐢. ‘+’ and ‘–’ means there was respectively an overestimation 

and underestimation in the prediction when given a larger 𝑠𝑖. The best result for each row 

among ‘Methods with fairness’ is in bold. 

 Methods without fairness  Methods with fairness 

 X 3dAE VAE-reg VFAE-MI BR-Net Ours 

Gender prediction 

AUC ↑ 1 -  0.866  0.807  0.802  0.840 

|Corr (BMI)| ↓ +0.035 - -0.061 -0.037 -0.035 -0.035 

|Corr (height)| ↓  -0.033 - -0.133 -0.072 -0.073 -0.047 

Rec error ↓ - 0.273  0.275  0.671 -   0.295 

BMI prediction 

R-MSE ↓ 0 -   1.786   2.706   2.504   2.373 

|Corr (height)| ↓ +0.243 - +0.338 +0.056 +0.047 +0.023 

|Corr (gender)| ↓ +0.035 - +0.027 +0.034 +0.021 +0.013 

Rec error ↓ - 0.273   0.276   0.681 -   0.278 

Height prediction 

R-MSE (cm) ↓ 0 -   5.303   6.617   6.480   6.222 

|Corr (BMI)| ↓ +0.243 - +0.424 +0.030 +0.026 +0.013 

|Corr (gender)| ↓  -0.033 -  -0.201  -0.049  -0.038  -0.028 

Rec error ↓ - 0.273   0.277   0.738 -   0.278 

 

Interpretation. Fig. 2 provides visualizations of the facial features that are used by the 

methods for prediction tasks. The baseline model (VAE-reg) [19] captured all features 

to boost the prediction, whereas our model captured the features that only related to the 

target and independent to biases. For gender prediction, our result is similar to that of 

VAE-reg because gender is nearly unbiased by height and BMI in the dataset. Since 

BMI and height are positively correlated in our dataset, the similar heatmaps for the 

BMI and height prediction of the VAE-reg indicate that it captured common facial fea-

tures for the two tasks, and thus failed to disentangle the confounding bias. In contrast, 

our model learned a target-specific representation, showing a strong correlation to the 

target attribute and without being confounded by other (bias) attributes.  

 

 

Fig. 2. Interpretation of facial features extracted for prediction. VAE-reg: results of VAE-reg 

[19]; Ours: results of the proposed method. Red and blue areas refer to inner and outer facial 

changes towards the geometric center of the 3D face, respectively.  

Gender (Male -> Female)                                     BMI (15.09 -> 21.86)                                      Height (135 -> 150cm)     

VAE-reg                         Ours                           VAE-reg                          Ours                          VAE-reg                         Ours

-2.5     -1.25     0mm     1.25     2.5 -5.0      -2.5      0mm      2.5      5.0 -5.0      -2.5      0mm      2.5      5.0
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4.2 Prediction on maternal alcohol consumption during pregnancy 

Fair Prediction. In the second experiment, our method achieved a similar prediction 

accuracy as the other fair methods while controlling the bias information at the lowest 

level (Table 2). Compared with the results of ‘Ours’, the results of ‘Ours-SSL’ showed 

that the semi-supervised strategy further improved the prediction accuracy and recon-

struction quality by additionally including missing-label training data, when controlling 

the bias information at a similar level. 

Table 2. Fair prediction results. Ours-SSL refers to the semi-supervised settings of our method.  

 Methods without fairness  Methods with fairness 

 X 3dAE 
VAE-

reg 
VFAE-

MI 
BR-Net Ours 

Ours-
SSL 

AUC ↑ 1 -   0.768   0.572   0.563   0.579   0.587 

|Corr (ethnicity)| ↓ +0.479 - +0.430 +0.076 +0.024 +0.040 +0.037 
|Corr (maternal smok-

ing)| ↓ 
+0.288 - +0.125 +0.050 +0.044 +0.032 +0.039 

|Corr (maternal age)| ↓ +0.407 - +0.257 +0.054 +0.044 +0.031 +0.034 
|Corr (BMI)|↓  -0.318 -  -0.418  -0.079  -0.055  -0.030  -0.019 

|Corr (gender) |↓  -0.020 - +0.078 +0.070 +0.069 +0.044 +0.036 

Rec error ↓ - 0.276   0.331   0.656 -   0.344   0.316 

 

Interpretation. We compared the interpretation results of the VAE-reg and our meth-

ods (Fig. 3), and further explained the gap between the baseline and our results, by 

visualizing our results with gradually increased fairness (Fig. 4): from left to right, in 

the first figure 𝐿𝑐𝑜𝑟𝑟  corrected for no bias in the training; in the last figure 𝐿𝑐𝑜𝑟𝑟  cor-

rected for all bias in the training (Eq. 4). Our results suggest low to moderate maternal 

alcohol exposure during pregnancy affected children’s facial shape. Affected regions 

were shown by our methods in Fig. 3, which is consistent with existing findings [17]. 

 

 

Fig. 3. Heatmaps show how the facial shape changes from non-exposed to exposed. 

 

Fig. 4. Explanation about how the target features were disentangled from biases. 

VAE-reg                           Ours                           Ours-SSL

-1.5   -0.75   0mm   0.75   1.5 -1.5   -0.75   0mm   0.75   1.5 -2.0    -1.0    0mm    1.0    2.0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1  Ethnicity

2 BMI

3 Maternal smoking

4 Maternal age

5  Gender

With bias

Without bias

-1.5       -0.75       0mm       0.75       1.5
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5 Discussion and Conclusion 

In this paper, we proposed a projection-wise disentangling method and applied it to 3D 

facial shape analysis. For evaluated tasks (BMI, height, gender and maternal alcohol 

exposure prediction), we achieved the best prediction accuracy while controlling the 

bias information at the lowest level. Also, we provide a solution to interpret prediction 

results, which improved mechanistic understanding of the 3D facial shape. In addition, 

given the shortage of labelled data in many domains, we expect that the proposed 

method with its semi-supervised extension can serve as an important tool to fully ex-

ploit available data for fair representation learning.  

Beyond the presented application, the proposed method is widely applicable to 

prediction tasks, especially to clinical analysis where confounding bias is a common 

challenge. For future work, we plan to disentangle aging effects from pathology of neu-

rodegenerative diseases. 

        The improvement of our method mainly comes from the projection strategy. Pre-

vious methods learn fair features 𝐙 by forcing 𝑀𝐼(𝐙, 𝑠) → 0, which encourages a global 

independence between 𝐙 and s, i.e., any linear or non-linear combination of 𝐙 con-

tains no information of 𝑠. This strong restriction leads to a decrease in diversity of 

learned features (Fig. A3), resulting in huge reconstruction error in VFAE-MI (Table 

1-2). This loss of diversity also explains why the prediction accuracy of baselines were 

limited although using all features in 𝐙 for prediction. In contrast, our strategy can be 

viewed as a conditional independence between 𝐙 and 𝑠, i.e., only a linear combination 

of 𝐙 (the projection z𝑝) being independent to s. This strategy allows that most of the 

information can be kept in the latent space, and thus minimizing the conflicts between 

reconstruction quality and fairness in auto-encoder models. This is crucial especially 

when the biases contain much more information of the input than the target does, e.g., 

the second experiment.  
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Appendix 

 

Algorithm 1: proposed semi-supervised fair representation learning 

Require: 𝐗u (unlabelled data), 𝐗l (labelled data), Nepoch, Nbatch_size 

Parameters:  𝛉𝑒𝑛𝑐 ,  𝛉𝑑𝑒𝑐, 𝛉𝑝𝑒 

1.  𝐍sample = min {𝑙𝑒𝑛(𝐗u), 𝑙𝑒𝑛(𝐗l)} 

2. i = 0 

3. while i < Nepoch, do: 

4.     randomly sample 𝐗us, 𝐗ls from 𝐗u, 𝐗l, respectively. 𝑙𝑒𝑛(𝐗us) = 𝑙𝑒𝑛(𝐗ls) =  𝐍sample  

5.     j = 0   

https://link.springer.com/article/10.1007/s11263-017-1009-7
https://link.springer.com/article/10.1007/s11263-017-1009-7
https://link.springer.com/article/10.1007/s11263-017-1009-7
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6.     while j <  𝐍sample, do: 

7.         Acquire unlabelled datapoints 𝐗ut from  𝐗us. 𝑙𝑒𝑛(𝐗ut) =  𝐍batchsize/2 

8.         update  𝛉𝑒𝑛𝑐 and  𝛉𝑑𝑒𝑐 by 𝐿𝑟𝑒𝑐(𝐗
ut) 

9.         Acquire labelled datapoints 𝐗lt from  𝐗ls. 𝑙𝑒𝑛(𝐗lt) =  𝐍batch_size/2 

10.         update  𝛉𝑒𝑛𝑐, 𝛉𝑑𝑒𝑐 and  𝛉𝑝𝑒 by 𝐿𝑗𝑜𝑖𝑛𝑡(𝐗
lt) 

11.         j = j +  𝐍batch_size/2 

12.     end while 

13.     i = i + 1 

14. end while 

15. return  𝛉𝑒𝑛𝑐 ,  𝛉𝑑𝑒𝑐 ,  𝛉𝑝𝑒 

 

 

 
Fig. A1: Validation curves of the methods for the height prediction task (Table 1). 

 

 
Fig. A2: 3D faces reconstructed by VAE-regression (1st row), and by the proposed projection-

wise disentangling (2nd row) for the BMI prediction task. 

 

Fig. A3: Correlation matrix of the learned latent features by VFAE-MI, BR-Net, 3dAE, and our 

method for the height prediction task. Higher correlations indicate lower feature diversity. 
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                  (a)                                           (b)                                       (c) 

Fig. A4: Data characteristic for the first experiments (N=4992). a) Histogram of BMI, for male 

and female, respectively; b) Histogram of height, for male and female, respectively; c) Joint dis-

tribution of BMI and height. A positive correlation between BMI and height can be observed. 

 

Table A1. Data characteristic of children and their mothers included in the second experiment 

(for labelled data N=1515). Maternal smoking, maternal age, child’s BMI and especially eth-

nicity showed imbalanced distribution between the non-exposed and exposed groups. 

Characteristic Non-exposed (control: N=760) Exposed (case: N=755) 

Child’s ethnicity, No. (%)   

Western 367 (48.3) 670 (88.7) 

    Non-western 393 (51.7) 85 (11.3) 
Child’s gender, No. (%)   

    Male 357 (47.0) 370 (49.0) 

    Female 403 (53.0) 385 (51.0) 
Child’s BMI, mean (SD) 18.6 (3.2) 16.8 (2.0) 

Maternal smoking, No. (%)   

    Yes 204 (26.8) 417 (55.2) 
    No 556 (73.2) 338 (44.8) 

Maternal age, mean (SD) 28.2 (5.0) 32.1 (3.9) 

 

Implementation details for baseline models: 

For VAE-reg, VFAE-MI, BR-Net, we adopted the default configurations from their 

official implementations (see links below). For this 3D facial shape analysis, we replace 

the original convolutional networks by the graph convolutional networks (3dAE, see 

links below). Four layers of graph convolutional networks were implemented for fea-

ture extraction, and another four layers for decoder in VAE-based models. These set-

tings guaranteed both baselines and our method had the same network framework for 

feature extraction (and for decoder if applicable). Any changes beyond above-men-

tioned settings were described in section 3.2. For both baselines and our method, the 

number of latent features was 32 for the first experiment, and 64 for the second.  

 

We will release the code for all methods in:  

https://github.com/tsingmessage/projection_wise_disentangling_FRL 

 

VAE-reg:       https://github.com/QingyuZhao/VAE-for-Regression 

VFAE-MI:     https://github.com/dendisuhubdy/vfae 

BR-Net          https://github.com/QingyuZhao/BR-Net/ 

3dAE:            https://github.com/sw-gong/spiralnet_plus 

https://github.com/QingyuZhao/VAE-for-Regression
https://github.com/dendisuhubdy/vfae
https://github.com/QingyuZhao/BR-Net/

