Skip to main content

Moving Object Detection Based on Self-adaptive Contour Extraction

  • Conference paper
  • First Online:
Book cover Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12888))

Included in the following conference series:

  • 1907 Accesses

Abstract

Object detection of moving targets requires both accuracy and real-time performance. In this paper, we propose a contour extraction prior to convolutional neural network to extract more salient features and use region proposal network to generate candidate regions. Afterwards, the feature maps and proposal regions are inputed to ROI pooling layer followed with some fully connected layers to classify objects and regress bounding box. Simulation experiments show that our method is effective in improving detection accuracy by testing on the dataset with 11 categories of moving targets.

Supported by the National Natural Science Foundation of China under Grant No.61806160 and Shaanxi Association for Science and Technology of Colleges and Universities Youth Talent Development Program, No. 20190112 and the Youth Innovation Team of Shaanxi Universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borji, A., Cheng, M.-M., Hou, Q., Jiang, H., Li, J.: Salient object detection: a survey. Comput. Visual Media 5(2), 117–150 (2019). https://doi.org/10.1007/s41095-019-0149-9

    Article  Google Scholar 

  2. Xiao, Y., et al.: A review of object detection based on deep learning. Multimedia Tools Appl. 79(33), 23729–23791 (2020). https://doi.org/10.1007/s11042-020-08976-6

    Article  Google Scholar 

  3. arXiv:1905.05055. https://arxiv.org/abs/1905.05055. Accessed 16 May 2019

  4. Everingham, M., Eslami, S., Gool, L.V., et al.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

    Article  Google Scholar 

  5. Redmon, J., et al.: You only look once: unified, real-time object detection. In: Computer Vision & Pattern Recognition IEEE (2016)

    Google Scholar 

  6. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

    Article  MathSciNet  Google Scholar 

  7. Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2015)

    Article  Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, 1097–1105(2012)

    Google Scholar 

  9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation, In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, pp. 580–587 (2014)

    Google Scholar 

  10. Girshick, R. : Fast R-CNN. In: Computer Science (2015)

    Google Scholar 

  11. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  12. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2017)

    Article  Google Scholar 

  14. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv e-prints(2018)

    Google Scholar 

  15. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 8(6), 679–698 (1986)

    Article  Google Scholar 

  16. Otsu, N.: A thresholding selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (2007)

    Article  MathSciNet  Google Scholar 

  17. Syed, H.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  18. Simonyan, K., Zisserman A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)

    Google Scholar 

  19. Neubeck, A., Gool, L. V.: Efficient non-maximum suppression. In: International Conference on Pattern Recognition, Hong Kong, pp. 850–855. IEEE Computer Society (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, X., Xue, T., Zhao, X. (2021). Moving Object Detection Based on Self-adaptive Contour Extraction. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12888. Springer, Cham. https://doi.org/10.1007/978-3-030-87355-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87355-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87354-7

  • Online ISBN: 978-3-030-87355-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics