Skip to main content

LLNet: A Lightweight Lane Line Detection Network

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12888))

Included in the following conference series:

Abstract

The lane line detection methods based on semantic segmentation networks have achieved remarkable results in recent years. However, the semantic segmentation networks are aimed at the pixel level. These methods have a large amount of computation, which can reduce the real-time performance. To reduce the calculation, we propose a Light-weight Lane line detection Network (LLNet). A new sub-layer is established. We also adopt a jumping structure between two sub-layers to enhance the supervisory role of ground truth. Furthermore, we adopt two branches, including instance segmentation and embeddable branch. The combination of two branches can filter out the wrongly detected pixels and further improve the accuracy of detection. Experimental results in the Tusimple dataset show that the detection accuracy of the proposed network is comparable with LaneNet. Meanwhile, it has good real-time performance, and the processing time of a single image is 10.285 ms, which is about one-half of LaneNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hillel, A.B., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a survey. Mach. Vis. Appl. 25(3), 727–745 (2014)

    Google Scholar 

  2. Yenikaya, S., Yenikaya, G., Düven, E.: Keeping the vehicle on the road: a survey on on-road lane detection systems. ACM Comput. Surv. (CSUR) 46(1), 1–43 (2013)

    Article  Google Scholar 

  3. McCall, J.C., Trivedi, M.M.: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. IEEE Trans. Intell. Transp. Syst. 7(1), 20–37 (2006)

    Google Scholar 

  4. Ye, Y.Y., Hao, X.L., Chen, H.J.: Lane detection method based on lane structural analysis and CNNs. IET Intell. Transp. Syst. 12(6), 513–520 (2018)

    Google Scholar 

  5. Satzoda, R.K., Sathyanarayana, S., Srikanthan, T., Sathyanarayana, S.: Hierarchical additive Hough transform for lane detection. IEEE Embedded Syst. Lett. 2(2), 23–26 (2010)

    Google Scholar 

  6. Aminuddin, N.S., Ibrahim, M.M., Ali, N.M., Radzi, S.A., Saad, W.H.M., Darsono, A.M.: A new approach to highway lane detection by using Hough transform technique. J. Inf. Commun. Technol. 16(2), 244–260 (2017)

    Google Scholar 

  7. Li, J., Mei, X., Prokhorov, D., Tao, D.: Deep neural network for structural prediction and lane detection in traffic scene. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 690–703 (2016)

    Article  Google Scholar 

  8. Kim, J., Kim, J., Jang, G.-J., Lee, M.: Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection. Neural Netw. 87, 109–121 (2017)

    Article  Google Scholar 

  9. Zou, Q., Jiang, H., Dai, Q., Yue, Y., Chen, L., Wang, Q.: Robust lane detection from continuous driving scenes using deep neural networks. IEEE Trans. Veh. Technol. 69(1), 41–54 (2019)

    Article  Google Scholar 

  10. Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M., Van Gool, L.: Towards end-to-end lane detection: an instance segmentation approach. In 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 286–291. IEEE (2018)

    Google Scholar 

  11. Kang, D.-J., Jung, M.-H.: Road lane segmentation using dynamic programming for active safety vehicles. Pattern Recogn. Lett. 24(16), 3177–3185 (2003)

    Article  Google Scholar 

  12. Suddamalla, U., Kundu, S., Farkade, S., Das, A.: A novel algorithm of lane detection addressing varied scenarios of curved and dashed lanemarks. In: 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 87–92. IEEE (2015)

    Google Scholar 

  13. Cela, A.F., Bergasa, L.M., Sanchez, F.L., Herrera, M.A.: Lanes detection based on unsupervised and adaptive classifier. In: 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks, pp. 228–233. IEEE (2013)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: ERFNet: efficient residual factorized convnet for real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19(1), 263–272 (2017)

    Google Scholar 

  17. Kim, J., Lee, M.: Robust lane detection based on convolutional neural network and random sample consensus. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8834, pp. 454–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12637-1_57

    Chapter  Google Scholar 

  18. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: spatial CNN for traffic scene understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  19. Qiao, D., Wu, X., Wang, T.: A lane recognition based on line-CNN network. In: 2020 Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC), pp. 96–100. IEEE (2020)

    Google Scholar 

  20. Lee, M., Lee, J., Lee, D., Kim, W., Hwang, S., Lee, S.: Robust lane detection via expanded self attention. arXiv preprint arXiv:2102.07037 (2021)

  21. Sheng, L., Luo, Z., Gao, F., Liu, M., Chang, K.H., Piao, C.: A fast and robust lane detection method based on semantic segmentation and optical flow estimation. Sensors 21(2), 400 (2021)

    Article  Google Scholar 

  22. Ren, K., Hou, H., Li, S., Yue, T.: LaneDraw: cascaded lane and its bifurcation detection with nested fusion. Sci. China Technol. Sci., pp. 1–12 (2021)

    Google Scholar 

  23. Singh, S., Krishnan, S.: Filter response normalization layer: Eliminating batch dependence in the training of deep neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11237–11246 (2020)

    Google Scholar 

  24. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  25. Tusimple dataset. https://github.com/TuSimple/tusimple-benchmark/wiki/

  26. Pizzati, F., Allodi, M., Barrera, A., García, F.: Lane detection and classification using cascaded CNNs. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2019. LNCS, vol. 12014, pp. 95–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45096-0_12

    Chapter  Google Scholar 

  27. Tabelini, L., Berriel, R., Paixao, T.M., Badue, C., De Souza, A.F., Oliveira-Santos, T.: PolylaneNet: lane estimation via deep polynomial regression. arXiv preprint arXiv:2004.10924 (2020)

  28. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Kong, B., Wang, C. (2021). LLNet: A Lightweight Lane Line Detection Network. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12888. Springer, Cham. https://doi.org/10.1007/978-3-030-87355-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87355-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87354-7

  • Online ISBN: 978-3-030-87355-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics