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Abstract Blind image deconvolution is the problem of recovering the latent image
from the only observed blurry image when the blur kernel is unknown. In this
paper, we propose an edge-based blur kernel estimation method for blind motion
deconvolution. In our previous work, we incorporate both sparse representation
and self-similarity of image patches as priors into our blind deconvolution model
to regularize the recovery of the latent image. Since almost any natural image
has properties of sparsity and multi-scale self-similarity, we construct a sparsity
regularizer and a cross-scale non-local regularizer based on our patch priors. It
has been observed that our regularizers often favor sharp images over blurry ones
only for image patches of the salient edges and thus we define an edge mask to
locate salient edges that we want to apply our regularizers. Experimental results on
both simulated and real blurry images demonstrate that our method outperforms
existing state-of-the-art blind deblurring methods even for handling of very large
blurs, thanks to the use of the edge mask.

Keywords Blind deconvolution - deblurring - sparse representation - self-
similarity - cross-scale
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1 Introduction

Motion blur caused by camera shake has been one of the most common artifacts in
digital imaging. Blind image deconvolution is an inverse process that attempts to
recover the latent (unblurred) image from the observed blurry image when the blur
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kernel is unknown. In general, for most of the work, the degradation is assumed
that the observed image is the output of a linear shift invariant (LSI) system to
which noise is added.

If the blur is shift-invariant, it can be modeled as the 2-D convolution of the
latent image with the blur kernel:

y=hxx+v, (1)

where * stands for the 2-D convolution operator, y is the observed blurry image,
h is the blur kernel (or point spread function), x is the latent image and v is the
additive noise. Then, removing the blur from the observed blurry image becomes
a deconvolution operation. When the blur kernel is unknown, the blind deconvo-
lution is a more severely ill-posed inverse problem. The key to the solution of the
ill-posed inverse problem is proper incorporation of various image priors about the
latent image into the blind deconvolution process. Non-blind image deconvolution
seeks an estimate of the latent image assuming the blur is known. In contrast,
blind image deconvolution tackles the more difficult, but realistic, problem where
the degradation is unknown.

Despite over three decades of research in the field, blind deconvolution still
remains a challege for real-world photos with unknown kernels. Recently, blind
deconvolution has received renewed attention since Fergus et al.’s work [I] and
impressive progress has been made in removing motion blur only given a single
blurry image. Some methods explicitly or implicitly exploit edges for kernel esti-
mation [234,5]. This idea was introduced by Jia [2], who used an alpha matte to
estimate the transparency of blurred object boundaries and performed the kernel
estimation using transparency. Joshi et al. [3] predict sharp edges using edge pro-
files and estimate the blur kernel from the predicted edges. However, their goal is
to remove small blurs, for it is not trivial to directly restore sharp edges from a
severely blurred image. In [4l[5], strong edges are predicted from the latent image
estimate using a shock filter and gradient thresholding, and then used for kernel
estimation. Unfortunately, the shock filter could over-sharpen image edges, and is
sensitive to noise, leading to an unstable estimate.

Another family of methods exploit various sparse priors for either the latent
image « or the motion blur kernel h, and formulate the blind deconvolution as a
joint optimization problem with some regularizations on both & and h [IL6[78/[9]
10]:

(&,h) = argr;l’ifrbl { Zw*H@*y — h o 0x||3 + Aapla) + )\hp(h)}, (2)

where s € {00, Oz, Oy, Oza, Ozy, Oyy, - - - } denotes the partial derivative operator in
different directions and orders, w, is a weight for each partial derivative, p(x) is a
regularizer on the latent sharp image x, p(h) is a regularizer on the blur kernel h,
and Ay and A\ are regularization weights. The first term in the energy minimiza-
tion formulation of blind deconvolution uses image derivatives for reducing ringing
artifacts. Many techniques based on sparsity priors of image gradients have been
proposed to deal with motion blur. Most previous methods assume that gradient
magnitudes of natural images follow a heavy-tailed distribution. Fergus et al. [I]
represent the heavy-tailed distribution over gradient magnitudes with a zero-mean
mixture of Gaussian based on natural image statistics. Levin et al. [11] propose
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a hyper-Laplacian prior to fit the heavy-tailed distribution of natural image gra-
dients. Shan et al. [8] construct a natural gradient prior for the latent image by
concatenating two piece-wise continuous convex functions. However, sparse gradi-
ent priors always prefer the trivial solution, that is, the delta kernel and exactly
the blurry image as the latent image estimate because the blur reduces the overall
gradient magnitude. To tackle this problem, there are mainly two streams of re-
search works for blind deconvolution. They use the maximum marginal probability
estimation of h alone (marginalizing over x) to recover the true kernel [6[7[1] or
optimize directly the joint posterior probability of both & and h by performing
some empirical strategies or heuristics to avoid the trivial solution during the min-
imization [8OLI0]. Levin et al. [6l[7] suggest that a MAP (maximum a posterior)
estimation of h alone is well conditioned and recovers an accurate kernel, while a
simultaneous MAP estimation for solving blind deconvolution by jointly optimiz-
ing  and h would fail because it favors the trivial solution. Perrone and Favaro
[O1I0] confirm the analysis of Levin et al. [6l[7] and conversely also declare that
total variation-based blind deconvolution methods can work well by performing
specific implementation. In their work, the total variation regularization weight is
initialized with a large value to help avoiding the trivial solution and iteratively
reduced to allow for the recovery of more details. Blind deblurring is in general
achieved through an alternating optimization scheme. In [9,[10], the projected al-
ternating minimization (PAM) algorithm of total variation blind deconvolution
can successfully achieve the desired solution.

More present-day works often involve priors over larger neighborhoods or image
patches, such as image super resolution [12], image denoising [13], no-blind image
deblurring [14] and more. Gradient priors often consider two or three neighboring
pixels, which are not sufficient for modeling larger image structures. Patch priors
that consider larger neighborhoods (e.g., 5 x 5 or 7 x 7 image patches) model more
complex structures and dependencies in larger neighborhoods. Image patches are
usually overlapped with each other to suppress block effect. Sun et al. [I5] use a
patch prior learned from an external collection of sharp natural images to restore
sharp edges. Michaeli and Irani [16] construct a cross-scale patch recurrence prior
for the estimation of the blur kernel. Lai et al. [I7] obtain two color centers for every
image patch and build a normalized color-line prior for blur kernel estimation.
More recently, Pan et al. [I8] introduce the dark channel prior based on statistics
of image patches to kernel estimation, while Yan et al. [19] propose a patch-based
bright channel prior for kernel estimation.

Recent work suggests that image patches can always be well represented sparsely
with respect to an appropriate dictionary and the sparsity of image patches over
the dictionary can be used as an image prior to regularize the ill-posed inverse
problem. Zhang et al. [20] use sparse representation of image patches as a prior for
blur kernel estimation and learn an over-complete dictionary from a collection of
natural images or the observed blurry image itself using the K-SVD algorithm. Li
et al. [2I] combine the dictionary pair and the sparse gradient prior with assump-
tion that the blurry image and the sharp image have the same sparse coefficients
under the blurry dictionary and the sharp dictionary respectively, to restore the
sharp image via sparse reconstruction using the blurry image sparse coefficients
on the sharp dictionary. The key issue of sparse representation is to identify a
specific dictionary that best represents latent image patches in a sparse manner.
Most methods use a database collecting enormous images as training samples to
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learn a universal dictionary. To make each patch of the latent image sparsely
represented over such a universal dictionary, the database need involve massive
training images, and thus this may lead to an inefficient learning and a potentially
unstable dictionary. Meanwhile, the database needs to provide patches similar to
the patches from the latent image, which cannot hold all the time. Alternatively,
the dictionary is trained from the observed blurry image itself. However, the spar-
sity of the latent sharp image over the learned dictionary cannot be constantly
guaranteed.

In this paper, we focus on an edge-based regularization approach for blind
motion deblurring using patch priors. In our previous work, sparse representation
and self-similarity are combined to work for image super resolution (SR) [12].
Super resolution approaches typically assume that the blur kernel is known (either
the point spread function of the camera, or some default low-pass filter, e.g. a
Gaussian), while blind deblurring refers to the task of estimating the unknown
blur kernel. Michaeli and Irani [16] have showed image super resolution approaches
cannot be applied directly to blind deblurring. In [22], we have proposed a blur
kernel estimation method for blind motion deblurring using sparse representation
and self-similarity of image patches as priors to guide the recovery of the latent
image. In the previously proposed method, we construct a sparsity regularizer and
a cross-scale non-local regularizer based on our priors. This method works quite
well for a wide range of blurs but fails to deal with some extremely difficult cases.
The edge-based method proposed in this paper is based on the observation that
our regularizers often prefer sharp images to blurry ones only for image patches of
salient edges. This fundamental observation enable us to build our regularizers on
salient edge patches. Finally, we take an approximate iterative approach to solve
the optimization problem by alternately updating the blur kernel and the latent
image in a coarse-to-fine framework.

The remainder of this paper is organized as follows. Section [2] describes the
background on sparse representation and multi-scale self-similarity. Sectionmakes
detailed description on the proposed method, including our patch regularizers, our
blind deconvolution model and the solution to our model. Section [4] presents ex-
perimental results on both simulated and real blurry images. Section [f] draws the
conclusion.

2 SPARSE REPRESENTATION AND MULTI-SCALE
SELF-SIMILARITY

2.1 Sparse Representation

Image patches can always be represented well as a sparse linear combination of
atoms (i.e. columns) in an appropriate dictionary. Suppose that the image patch
can be represented as Q; X, here Q; € R™ ¥ is a matrix extracting the jth patch
from X € R” ordered lexicographically by stacking either the rows or the columns
of x into a vector, and the image patch Q;X € R™ can be represented sparsely
over D € R™**, that is:

Q; X = Day, |lajllo < n, (3)
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where D = [d1,- -+ ,d:] € R"*" refers to the dictionary, each column d; € R™ for
j=1,---,t represents the atom of the dictionary D, a; = [a1, - - ,ozt]T € R is
the sparse representation coefficient of Q; X and ||a||o counts the nonzero entries
in .

Given a set of training samples s; € R™,i = 1,--- ,m, here m is the num-
ber of training samples, dictionary learning attempts to find a dictionary D that
forms sparse representations «;,7 = 1,--- ,m for the training samples by jointly
optimizing D and «;,i = 1,--- ,m as follows:

S 2
N ; llsi — Dall3 s.t. Vi |lagllo < T, (4)

where T" < n controls the sparsity of a; for ¢ = 1,--- ,m. The K-SVD method
[23] is an effective dictionary learning method which solves Eq. by alternately
optimizing D and a;,i =1,--- ,m.

We firstly use the K-SVD method [23] to obtain the dictionary D. Then, we
have to derive the sparse coefficient o; for the patch Q;X. Eq. can be formu-
lated as the following £p-norm minimization problem:

min |Q; X —Dayl3 s.t. [lllo < T, (5)

where T is the sparsity constraint parameter. In our method, we obtain an approx-
imation solution é&; for Eq. by using the orthogonal matching pursuit (OMP)
method [24].

As a matter of fact, the precision of the K-SVD method can be controlled either
by constraining the representation error or by constraining the number of nonzero
entries in a;. We use the latter formulated in Eq., because it is required in the
OMP method [24]. In other words, the objective could be met by constraining the
number of nonzero entries in the sparse representation coefficients «;. Once the
sparse coefficient &; is derived by solving Eq.7 the reconstructed image patch
QjX can be represented sparsely over D through QjX =Dé;.

2.2 Multi-Scale Self-Similarity and Non-local Regularization

Most natural images have properties of multi-scale self-similarity: structures from
image fragments tend to repeat themselves at the same or different scales in natural
images. In particular when small image patches are used, patch repetitions are
found abundantly in multiple image scales of almost any natural image, even when
we do not visually perceive any obvious repetitive structure. This is due to the fact
that very small patches often contain only an edge, a corner, etc. [25]. Glasner et
al. [25] have showed that almost any image patch in a natural image has multiple
similar patches in down-scaled versions of itself.

Fig[T] schematically illustrates patch repetitions of self-similar structures both
within the same scale and across different scales of a single image. For a patch of
size 7 x 7 (marked with a red box) in Fig[l|(a), we search for its 5 similar patches
(marked with blue boxes) in this image. Figb) shows close-ups of these similar
patches within the same scale. In this example, the image is down-sampled by a
factor of a = 2, as shown in Figc). For the patch marked with a red box in
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Figa) at the original scale, we also search for its 5 similar patches of the same
size in Figc), marked with blue boxes. Figd) shows close-ups of these similar
patches searched from the down-sampled image, i.e. cross-scale similar patches.
The patches shown in Fig[l] are displayed with clear repetitive structure in this
image.

(b) Similar image patches within the

same scale

(c) Down-sampled image (d) Similar image patches across dif-
ferent scales

Fig. 1 Patch repetitions occur abundantly both within the same scale and across different
scales of a single image.

The non-local means was firstly introduced for image denoising based on this
self-similarity property of natural images in the seminal work of Buades [26], and
since then, the non-local means is extended succesfully to other inverse problems
such as image super resolution and non-blind image deblurring [27,28]. The non-
local means is based on the observation that similar image patches within the
same scale are likely to be appeared in a single image, and these same-scale similar
patches can provide additional information. In our blind deconvolution model, we
use similar image patches across different scales to construct a cross-scale non-
local regularization prior by exploiting the correspondence between these cross-
scale similar patches of the same image. Suppose that X € RY and X® e R/ o?
represent the sharp image and its down-scaled version respectively, where N is the
size of the sharp image, and a is the down-scaling factor. For each patch Q;X in
the sharp image X, we can search for its similar patches R; X® in X® that the
similarity is measured by the distance between Q;X and R; X, here Q; € RN
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and R; € R™*N/9* are matrices extracting the jth and the ith patch from X and
X @ respectively, and n is the size of the image patch. The linear combination of
the L most similar patches of Q;X (put into the set S;) is used to predict Q; X,
that is, the prediction can be represented as the following weighted sum:

QX =~ ) wRX", (6)
=

where

W - ep(=]Q X — R X“|3/h) )

" Yies, exp(—[Q; X — Ry X“|[3/h)

is the weight and h is the control parameter of the weight. It is noted from self-
similarity that any patch can, in some way, be approximated by other similar
patches of the same image. Obviously the difference between Q; X and its predic-
tion should be small and the prediction error can be used as the regularization in
our blind deconvolution model (i.e. the cross-scale non-local regularizer).

3 Blind Deconvolution
3.1 Use of Cross-Scale Self-Similarity

We incorporate both sparse representation and self-similarity of image patches as
priors into our blind deconvolution model to regularize the recovery of the latent
image with these priors as regularizers. Since patches repeat across scales in natural
images, our patch-based regularizers can depend on abundant patch repetitions
across different scales of the same image. Typically we partition the latent image
into small overlapping patches. For every patch of the latent image, we search for
similar patches of the same size in a down-scaled version of itself. We construct
a sparsity regularizer by sparsely representing the latent sharp image over the
dictionary that these cross-scale similar patches are used as training samples to
learn, denoted by Reg,(x):

Reg.(z) =) _[Q;X — Day3, (8)
j

and a cross-scale non-local regularizer according to the correspondence between
the latent image patch and its similar patches searched from the down-scaled latent
image to enforce the recovery of sharp edges, denoted by Reg,(x):

Reg,(z) =) 1Q;X — Y w]RiX"|3, (9)
i

€S,

where D is the learned dictionary for sparse representation, X is the vector-form
notion of &, X* is the down-scaled version of X by a factor a, Q; X and R; X*
represent the jth and the ith patch extracted from the latent image X and its
down-scaled version X“ respectively, and S; denotes the set of the p most similar
patches of Q; X searched from X“. We only use similar image patches at down-
sampled scales of the latent image to construct the non-local regularizer, without
involving those within the same scale into our non-local regularizer.
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The choice of training samples is very important for dictionary learning prob-
lem. Ideally the dictionary D should be trained from the patches sampled from the
unknown latent sharp image. In our previous single-image super-resolution work
[12], the dictionary is trained from the low-resolution image itself. Unforturnately,
it is not a good choice for blind deblurring to learn a dictionary using the observed
blurry image itself as training samples. This is because the dictionary trained from
the blurry image cannot guarantee the sparsity of sharp image patches. In the
previously proposed method [22], we used an adaptive over-complete dictionary
trained from the down-scaled blurry image, more similar to the latent sharp image
than the blurry image itself. In this paper, we present an improvement to collect
training samples from the down-scaled latent image estimate, as will be detailed
later.

We now provide illustration to account for the use of cross-scale self-similarity.
Although patches repeat within and across scales of the sharp image, as illustrated
in Figll] the similarity diminishes significantly between the sharp image and its
blurred counterpart. For the patch marked with a red box from the sharp image
shown in Figa), we still search for its 5 most similar patches from the blurry
image (Figl(a)) and its down-scaled version (Fig[2|(c)) by using block match-
ing, respectively. Fig[2] shows that the patches from the down-scaled blurry image
(Figd)) that are more similar to the patch from the sharp image than the
patches from the blurry image itself (Fig[2(b)). This is because the blur effect
tends to weaken at coarser scales of the image despite the strong blur at the origi-
nal scale. It is easy to verify that down-scaling an image by a factor of a produces
a-times sharper patches of the same size that are more similar to patches from the
latent sharp image. Please refer to [16] for the proof.

Fig illustrates the reason why similar patches across different scales are avail-
able for providing a prior for restoration. Suppose that f (&) and f (£/a) are cross-
scale similar patches and f(£/a) is an a-times larger patch in the sharp image,
here € denotes the spatial coordinate. Accordingly, their blurry counterparts ¢ (§)
and 7 (§) are similar across image scales, and the size of r (§) is a times as large
as that of ¢ (¢) in the blurry image. In Fig the blurry image is a times the size
of its down-sampled version. Down-scaling the blurry patch r (§) by a factor of a
generates an a-times smaller patch r® (). Obviously, ¢ (§) and r* () are of the
same size and the patch r* (£) from the down-sampled image is exactly an a-times
sharper version of the patch ¢ (£) in the blurry image. In such a case, r® (£) can
offer much exact prior information for the recovery of q (&). Fig schematically
demonstrates that the patches at coarser image scales can serve as a good prior,
although it is an ideal case.

In summary, we incorporate effectively prior knowledge provided by cross-scale
similar patches into our regularizers. As stated above, the down-scaled latent image
estimate can provide sharper patches of the same size that are more similar to
patches from the latent sharp image. In the sparsity regularizer, the dictionary is
trained from sharper patches sampled from the down-scaled latent image estimate
to make latent image patches well represented sparsely. In the cross-scale non-local
regularizer, meanwhile, all latent image patches are optimized to be as close to their
sharper similar patches searched from the down-scaled latent image estimate to
enforce the sharp recovery of the latent image as possible.
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(a) Blurry image (b) Similar patches in blurry image

(c) Down-sampled blurry image (d) Similar patches in down-sampled
blurry image

Fig. 2 Down-scaled blurry patches are more similar to the sharp patch than blurry patches
at the original scale.

Sharp image Blurry image

f (&/a) & 7 (§)
) (E!< (£

Down-sampled blurry image

Fig. 3 Similar patches across different scales are available for providing a prior for restoration.
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3.2 Analysis on Regularizers

In regularization approaches, blind deconvolution is generally formulated as an
energy minimization problem with appropriate regularizers, which tends to be
minimal at the desired latent image. The regularizers are used to impose additional
constraints on the optimization problem. They significantly benefit the solution
of the blind deconvolution problem based on the condition that the regularization
functions with respect to the sharp image x should be significantly smaller than
those with respect to its blurry counterpart y. We will make the sparsity and the
self-similarity comparison between the sharp image and the blurry image based on
our patch regularizers respectively, and discuss whether the condition is satisfied
or which patches satisfy this condition.

3.2.1 Sparsity Regularizer

First of all, we compare the sparsity regularization functions Reg,(x) and Reg,.(y)
with respect to the sharp image « and the blurry one y, respectively. For compar-
ison, we generate the blurred image by the convolution of the sharp image shown
in Figa) with the averaging blur kernel. The dictionary is trained from patches
sampled from the down-sampled blurry image. We calculate the values of the spar-
sity regularization functions with respect to the sharp image and several blurred
images with blur kernels of varying sizes of 2 x 2, 3 x 3 and 5 X 5, respectively,
which are averaged over all pixels, as shown in Table [I| where N is the size of
the image, n is the size of image patch. The smaller the value, the smaller the
sparse representation error. This means that the image is better represented over
the learned dictionary. From Table |1} we can see that the sharp image has larger
sparse representation error than any blurred image over the learned dictionary,
and the larger blur corresponds to the sparser representation of the blurred image
in terms of the entire image.

Table 1 Comparison of sparsity regularizer between sharp image and blurry images with blur
kernels of different sizes

Sharp 2 x2blur 3 x3blur 5 x5 blur
Reg.(-)/(N -n) 5.40 3.70 2.70 1.72

Note: the intensity range is [0, 1].

Then we compare the sparsity regularization functions with respect to the
sharp image and the blurred counterpart on a patch-by-patch basis. Let R, rep-
resent the set of pixels at which the sharp patch has smaller sparse representation
error than the blurred one over the learned dictionary. That is,

Re = {jl 1Q; X — D3 < |Q;Y — Dey; 3}, (10)

where X and Y denote the vector notations of the sharp image & and the blurred
image y respectively. Figlda) shows the blurred image with the averaging blur
kernel of size 2 x 2. In Fib), the set R. are indicated with white pixels where
the sharp patch achieves smaller sparse representation error than the blurred patch
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over the learned dictionary. From Figb), we can see that the sparsity regularizer
of the sharp image is smaller than that of the blurred image only for some certain
patches. Intuitively, these regions comprised of white pixels coincide with edges
and sharp changes in this image. It is believed that most image structures are
often reflected around edges and areas of high variation. The optimal dictionary
should produce sparsest representation of edge patches in the latent sharp image.

3.2.2 Non-local Regularizer

For the same reason, we compare the non-local regularization functions Reg ()
and Reg, (y) with respect to the sharp image « and the blurry one y, respectively.
Similarly, we calculate the values of the non-local regularization functions with
respect to the sharp image and the blurred images with blur kernels of varying
sizes of 2x 2, 3 x 3 and 5 x 5 respectively, averaged over all pixels, as shown in Table
[l The smaller the value, the smaller the prediction error. It means that there is
stronger cross-scale self-similarity throughout the image. From Table 2] we can see
that the sharp image reveals the weakest cross-scale self-similarity, and the blurred
image with larger blur kernel displays stronger cross-scale self-similarity in terms
of the entire image.

Table 2 Comparison of cross-scale non-local regularizer between sharp image and blurry
images with blur kernels of different sizes

Sharp 2 x2blur 3 x3blur 5 x5 blur
Reg,(-)/(N -n) 0.0448 0.0385 0.0339 0.0271

Note: the intensity range is [0, 1].

We still compare the non-local regularization functions with respect to the
sharp image and the blurred counterpart on a patch-by-patch basis. Let R rep-
resent the set of pixels at which the sharp patch has smaller prediction error than
the blurred one. That is,

Re={j| 1Q;X — > w/R X3 < QY - Y w/Ri Y3}, (11)
i€ES; i€ES;

where Y and Y® denote the vector notation of the blurred image y and its down-
sampled version by a factor of a. From Figc), the set Rs indicated with white
pixels is also roughly consistent with edges of the image. Our further observation
shows that image edges do not always help kernel estimation when the scale of the
edge is smaller than that of the blur kernel, while salient edges can effectively avoid
the trivial solution and get an accurate blur kernel. We use Sun et al’s strategy
[15] (see the following edge mask M for more details) to detect and select salient
edges of the blurred image, as is shown in Figd).

It can be observed from the comparison of Figs. c) and (d) that the cross-scale
non-local regularizer of the sharp image is smaller than that of the blurred image
roughly around salient edges. The blur alters to different extent edges of repetitive
structures across different scales and thus deteriorates cross-scale self-similarity
properties of edge structures in the blurry image.
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(c) Rs (d) Salient edges of (a)

Fig. 4 Sharp image has stronger sparsity and cross-scale self-similarity than blurred image
roughly around salient edges.

3.3 Modeling and Optimization

Although natural images generally have properties of sparsity and self-similarity,
in the previous part, we have made detailed discussions on our two regularizers
Reg.(x) and Reg,(x), and come to the conclusion that Regc(x) < Regc(y) and
Regs(x) < Regs(y) are often satisfied only for image patches of salient edges.
In other words, they only favor the sharp solution over the blurred one around
salient image edges. In order to generate more exact solutions, our regularization
constraints are only imposed on image patches of salient edges.

In this paper, we define the edge mask M according to the corresponding
salient edge pixels, which is a binary mask indicating pixel locations that we want
to apply our priors. We employ a heuristic process to detect and select salient edges
of the latent image estimate during the optimization in a coarse-to-fine framework
for kernel estimation and thus we do not present a joint energy minimization
formulation of both the latent image x and the blur kernel h. In each level of
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the image pyramid, we take an approximate approach to solve the optimization
problem by directly alternating between optimizing the kernel h and the latent
image .

1. Updating M

This step chooses pixel locations to apply our patch priors. Since our regulariz-
ers prefer the sharp image to the blurry one only around salient edges, in order to
benefit the blur kernel estimation, we first detect and select useful salient edges.
We adopt Sun et al.’s strategy [I5] to filter the latent image estimate & with
a filter bank consisting of derivatives of Gaussians in eight directions and obtain
the edge mask M by keeping the top 2% of pixel locations from the largest filter
responses of the filter bank. In our model, regions outside the mask are weakly
regularized by our patch priors, resulting in noise amplification in flat or smooth
regions, and therefore the Gaussian low-pass filter are utilized before salient edge
selection.

2. Updating h

In this step, we fix & and update ilk+1~ The minimization problem is defined
with a Gaussian regularizer as:

hisr = argmin {[|Vy = b+ (Va, © M)[3 + AnllBl13}, (12)

where V = {0;,0y} denotes the spatial derivative operator in two directions,
® stands for the pixel-wise multiplication, and A, is the regularization weight to
control the tradeoff between the fidelity to the observation model (as accounted for
by the former term) and the smoothness of the estimated blur kernel (as reflected
by the latter term). We multiply V& by the mask M (i.e. V&, ©® M) to enforce
that regions outside the mask do not participate in estimating h. We only allow
salient edges in the mask M to participate in the constraint of the observation
model by setting the gradient V& outside M to zero.

On the other hand, we take a common way to eliminate the influence of smooth
or flat regions of the image on kernel estimation [4BlI5[17]. The pixels whose
gradient magnitudes are less than a certain threshold in the intermediate latent
image estimate are set to zero. Let 7 denote a threshold of the gradient magnitude
and N}, denote the size of the blur kernel. The threshold for truncating gradients
is determined as follows. We construct the histograms of gradient magnitudes and
directions for each d.%. Angles are quantized by 45°, and gradients of opposite
directions are counted together. Then, we find a threshold that keeps at least
r+/Np, pixels from the largest magnitude for each quantized angle. We use 2 for
r by default. To allow for inferring subtle structures during kernel refinement, we
gradually decrease the value of the threshold 7 in iterations by dividing by 1.1
at each iteration, to include more and more edges. Eq. excludes part of the
gradients, depending jointly on the magnitude and the edge mask M. In order to
suppress the noise in flat or smooth regions, however, we do nothing on Vy. This
selection process reduces ambiguity in the following kernel estimation.

Eq. is a quadratic funciton of unknown h, which has a closed-form solution
for izk+1. We solve Eq. in the Fourier domain by performing FFTs on all
variables and setting the derivative with respect to h to zero:

hss = 71 (fwmaek O M)F(0ry) + F(0,8: O M)f(ayw) )

f(ami?kQM)2+f(ay53k®M)2+>\h
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where F(-) and F~*(-) denote the fast Fourier transform and inverse Fourier trans-
form respectively, and F(-) is the complex conjugate operator.

3. Updating «

In this step, we fix iLk_H, and given &, update Zry1. With our patch priors
as regularizers, we establish our regularizers on salient edge patches of the image,
and get the following regularized minimization:

. . o N
#sr =argmin {[IVy — husr s Val3 + ey 3 1Q5X — Doy}
jeM

N i a
g 2 QX = 3 wlRXC I+ ] Va3 | o (19

jeM i€S;
s.t. Vi [lagllo < T

where | M| is the number of non-zero elements in the mask M, and N is the
size of the latent image, D is the dictionary trained from the down-scaled latent
image estimate, X is the vector notation of the latent image @, X is the down-
sampled version of X by a factor of a, and A¢, As, and Ay are regularization weights
controlling the effect of the regularizers. In Eq., the first term is the fidelity
to the observation model, the second term is the sparsity regularizer, the third
term is the cross-scale non-local regularizer, and the last term is the smoothness
constraint of the estimated latent image.

Rearranging y in vector form, denoted by Y € RY, and rewriting the convo-
lution of the blur kernel and the latent image in matrix-vector form, Eq. can
be rewritten as

X1 =argmin {HGmY —Hj1Go X3+ |GyY — Hies1 Gy X2

N N ;
+ACM > IIQjX*DajH%JrAsM DX - ) wiR: X3
jEM jEM i€S; ,

+ 2 (1G XI3 + G, X13) |

s.t. Vj |lajllo < T
(15)
where G; and Gy € RY*N are the matrix forms of the partial derivative operators
0 and 0Oy in two directions respectively, and Hy4; € RM*N is the blur matrix.
Setting the derivative of Eq. with respect to X to zero and letting G =
GIG, + GgGy, we derive

[(H 1 Hin +20)G + Qe + Ay 22 Q7 Q] Xiws =
Jje

Hi GY + ey & QfDaj+ Ay X QF X wiRiXiy,y’
JEM JEM i€S;

(16)

Since both sparse representation coefficients a; and the down-sampled image
X,;‘Jrl on the right-hand side of Eq. depend on unknown Xk+1, Eq. can-
not be solved in closed form. Instead we approximately solve Eq. with the
following procedure:

(1) The K-SVD _method [23] is used to attain the dictionary D by approxi-
mately solving Eq.. For each patch Qij in X}, that the mask M selects, the
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OMP method [24] is used here to derive the sparse representation coefficient o
over the dictionary D by approximately solving the following constrained mini-
mization problem:

&; = argmin |Q; Xi — Doy 3 sit. [laflo < T (17)
J

Since the sparse coefficient a; on the right-hand side of Eq.(16]) depends on un-
known Xk+1, we approximate Xk+1 using X;c to solve the sparse coefficient &;
over the dictionary D.

(2) For the same reason, since X1 and its down-scaled X,?+1 are both un-
known, we approximate Xk+1 and X,?Jrl using Xk and X,‘j respectively. For each
patch Q]Xk in Xk that the mask M selects, we search for its similar patches
R; X2, ic S in the down-scaled image Xk of X}, and use the linear combination
of these similar patches ), 8, Wy JR; X} to predict it. Here S; and @7 are updated
according to X and X2.

(3) Eq. can beA reformulated by substituting the sparse coefficient &;, the

set of similar patches S; and the weights @7 derived from the above approximations
into the right-hand side of Eq., such that:

[(Hi 1 Hep + 29)G + (Ae + /\s)% Z Qf Q)| X1 =

k+1GY+>\C‘M| Z Q;FDGJ—F)\SlMl ZMQ;F S wIRXE
Je i€S;

(18)

Since it is a linear equation with respect to X k+1, Eq. can be solved by direct
matrix inversion or the conjugate gradient method. In our method, Xk+1 are
updated by solving it using the bi-conjugate gradient (BICG) method.

4. Repeat steps 1-3 until convergence or for a fixed number of iter-
ations.

3.4 Implementation

To speed up the convergence and handle of large blurs, following most existing
methods, we estimate the blur kernel in a coarse-to-fine framework. We apply
our alternating iterative minimization procedure described in Section to each
of the levels of the image pyramid constructed from the blurred image y. The
blur kernel refinement starts from the coarsest level and works down to the finest
level with the original image resolution. At the coarsest level, the latent image
estimate is initialized with the observed blurry image. The intermediate latent
image estimated at each coarser level is interpolated and then propagated to the
next finer level as an initial estimate of the latent image to refine the blur kernel
estimate in higher resolutions.

Different from [22], in which the dictionary is trained from patches randomly
sampled from the down-scaled blurry image, in this paper, the dictionary is trained
from edge patches sampled directly from the intermediate latent image estimated
at the coarser scale, and iteratively updated once for each image scale during
the solution. We do not pay attention to the sparsity of the entire image over
the learned dictionary, but only the sparsity of edge patches in the image, for
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our sparsity regularizer prefers the sharp image to the blurred one only for edge
patches.

Blind deconvolution in general involves two stages. The motion blur kernel h is
firstly estimated by alternately updating the motion blur kernel h and the latent
image x. The intermediate latent images estimated during the iterations have no
direct influence on the final deblurring result, and only affect this result indirectly
by contributing to the refinement of the blur kernel estimate k. Then, the final
deblurring result & is recovered from the given blurry image y with the estimated
blur kernel A for the finest level by performing a variaty of non-blind deconvolution
methods, such as fast TV-£; deconvolution [5], sparse deconvolution [6] and EPLL
[29] ete..

We estimate the blur kernel h by the implementation of the pseudo-code out-
lined in Algorithm [I} We construct an image pyramid with L levels from the given
blurry image y. The number of pyramid levels is chosen such that, at the coarsest
level, the size of the blur is smaller than that of the patch used in the blur kernel
estimation stage. Let us use the notation a?ﬁC for the intermediate latent image
estimate, where the superscript [ indicates the lth level in the image pyramid,
while the subscript k£ indicates the kth iteration at each scale level. The iterative
procedure starts from the coarsest level [ = 1 of the image pyramid initialized
with &) = y. At each scale level I € {1,---,L}, we take the iterative procedure
that alternately optimizes the motion blur kernel h and the latent image x as
detailed in Section [3-3] which is implemented repeatedly until the convergence or
for a fixed number of iterations. Then the outcome of updating the latent image
at the [th level is upsampled by interpolation and then used as an initial estimate
of the latent image for the next finer level [ + 1 to progressively refine the motion
blur kernel estimate iL, which is repeated to achieve the final refinement of the
blur kernel estimate h for the finest level.

Algorithm 1: Edge-Based Blur Kernel Estimation Using Sparse Represen-
tation and Self-Similarity

Input: Blurry image y R

Output: Blur kernel estimate h

Set down-scaling factor a, regularization weights Ay, Ac, As, Ap, size of patch n, size of
dictionary t, sparsity constraint parameter 7', number of similar patches p,
convergence tolerance ¢ and maximum allowed number of iterations maxIters;

Build an image pyramid with L levels;

Initialize ié =y;

Train dictionary D using i(l);

Outer loop: for I =1 tol =L do // for each level of image pyramid
Initialize k£ = 0, gradient threshold T;
Inner loop: repeat // for each iteration

Predict the edge mask M,
Compute blur kernel izﬁﬁ_l using Eq.;
Given ifc, update latent image ifﬁ_l by solving Eq. using BICG;
T=71/11;k=k+1
until k > maxTters or |2} — &} |2 < ¢
Update dictionary D using i%@;

| Upscale image a”:fc to initialize a‘:f)+1 for the next finer level;
h=hl;z=2al.
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In the blur kernel estimation process, we use the gray-scale versions of the
blurry image y and the intermediate latent image estimate &. Once the blur kernel
estimate h has been obtained with the original image scale, we perform the final
non-blind deconvolution with & on each color channel of y to obtain the deblurring
result.

Finally, our method need perform deconvolution in the Fourier domain. To
avoid ringing artifacts at the image boundaries, we process the image near the
boundaries using the simple edgetaper command in Matlab.

4 EXPERIMENTS

Several experiments are conducted to demonstrate the performance of our method.
We first test our method on the widely used datasets introduced in [6] and [I5],
and make qualitative and quantitative comparisons with the state-of-the-art blind
deblurring methods. Then we show visual comparisons on real blurry photographs
with unknown blurs. The relevant parameters of our method are set as follows:
the dictionary D is of size t = 100, and the sparsity constraint parameter T = 4,
designed to handle image patches of size n = 5 x 5, the number of iterations is
fixed as 14 for the inner loop, and the regularization weights are empirically set
to Ae = 0.04/n, As = 0.04/n, Ag = 0.003 and A, = 0.0003N. As the down-scaling
factor increases, image patches become sharper, but there exist less similar patches
at the down-sampled scale. Following the setting of [16], the image pyramid is
constructed with scale-gaps of a = 4/3 using down-scaling with a sinc function.
Additional speed up is obtained by using the fast approximate nearest neighbor
(NN) search of [30] in the blur kernel estimation stage, working with a single NN
for every patch.

An additional important parameter is the size of the blur kernel. Small blurs
are hard to solve if it is initialized with a very large kernel. Conversely, large blurs
will be truncated if too small a kernel is used [I]. Following the setting of [I5],
we do not assume that the size of the kernel is known and initialize that the size
of the kernel is 51 x 51 in most cases except for some extremely difficult cases.
Experiment results on both simulated and real blurry images show the size of the
blur kernel is generally not larger than 51 x 51 for most blurry images. Even though
the input blurry image has a small blur kernel, our method is still able to obtain
a good deblurring result, less sensitive to the initial setting of the kernel size.

4.1 Quantitative Evaluation with Reference to Ground Truth

We test our method on two publicly available datasets. One dataset, which is
provided by Levin et al. [6], contains 32 images of size 255 X 255 blurred by real
camera shake. The blurred images with spatially invariant blur and 8 different
ground-truth kernels were captured simultaneously by locking the Z-axis rotation
handle but loosening the X and Y handles of the tripod. The kernels range in size
from 13 X 13 to 27 x 27. The other dataset provided by Sun et al. [I5] comprises
640 natural images of diverse scenes, which were obtained by synthetically blurring
80 high-resolution images with the 8 blur kernels from [6] and adding 1% white
Gaussian noise to the blurred images. We present qualitative and quantitative
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comparisons with the state-of-the-art blind deblurring methods [11[4}[51[7,OL16115]
311132,133].

We measure the quality of the blur kernel estimate h using the error ratio
measure ER [16]:

Nl — g )13

ER (19)

le — @3’
where &;, corresponds to the deblurring result with the recovered kernel fl, and Tp,
corresponds to the deblurring result with the ground-truth kernel h. The smaller
ER corresponds to the better quality. In principle, if ER = 1, the recovered kernel
yields a deblurring result as good as the ground-truth kernel.

On the dataset provided by Levin et al. [6], we compare our error ratios with
those of Fergus et al. [I], Cho and Lee [4], Xu and Jia [5], Perrone and Favaro
[9], Levin et al. [7], Perrone et al. [33] and our previous method [22]. Fig[5] shows
the cumulative distribution of the error ratio of our method compared with the
other methods over the dataset of [6]. Levin et al. [7] use sparse deconvolution [6]
to generate the final results, and observe that deconvolution results are usually
visually plausible when their error ratios are below 3. Therefore, we standardize
the final non-blind deconvolution by using sparse deconvolution [6] to obtain the
results, for fair comparison. Table [3] lists the success rate and the average error
ratio over 32 images for each method. The success rate is the percentage of images
which achieve good deblurring results, that is, the percentage of images that have
an error ratio below a certain threshold. On this dataset, the success rate is the
percentage of the results under the error ratio of 3. Table [3] shows our method
takes the lead with a success rate of 100%, a higher success rate than our previous
method without considering salient edges [22]. Levin et al. [7], Perrone and Favaro
[9] and Perrone et al. [33] initialize the size of the blur kernel with ground truth,
while the size of the blur kernel is unknown for real scenes. Even so, our method

still achieves a much higher success rate than the other methods over the dataset
of [6].

Table 3 Quantitative comparison of different methods over the dataset of [6]

Success rate% Mean error ratio
Ours 100 1.4433
Yu et al. [22] 96.88 1.4653
Perrone et al. [33] 93.75 1.2024
Xu & Jia [5] 93.75 2.1365
Perrone & Favaro [9] 87.50 2.0263
Levin et al. [7] 87.50 2.0583
Fergus et al. [I] 75.00 13.5268
Cho & Lee [4] 68.75 2.6688

On this dataset provided by Sun et al. [I5], we compare our error ratios with
those of Cho and Lee [4], Xu and Jia [5], Levin et al. [7], Sun et al. [I5], Michaeli
and Irani [I6], Cho et al. [31], Krishnan et al. [32] and our previous method [22].
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Fig. 5 Cumulative distributions of error ratios with different methods on the dataset of [6]

Fig@ shows the cumulative distribution of error ratios over the entire dataset for
each method. We apply the blur kernel estimated by each method to perform
deblurring with the non-blind deblurring method of [29] to recover latent images.
It is empirically observed by Michaeli and Irani [I6] that the deblurring results
are still visually acceptable for error ratios ER < 5, when using the non-blind
deconvolution of [29]. Table [4] lists the success rate (i.e., an error ratio below
5) and the average error ratio over 640 images with different methods. Table El
shows our method achieves the highest success rate and the lowest average error
ratio followed by Michaeli and Irani [I6] and Sun et al. [I5]. Moreover, these two
methods by Michaeli and Irani [I6] and Sun et al. [15] take 9213 and 4899 seconds
on average to process an image of size 1024 x 800 from this dataset respectively,
and our method take 1823 seconds, much faster than their methods.

Figsm and [8] show qualitative comparisons of cropped results on two blurred
images from the synthetic dataset of [I5] by different methods. Compared with
the other methods, our method usually obtains more accurate blur kernels, suffers
from fewer ringing artifacts and restores more and sharper image details.

4.2 Qualitative Comparison on Real Images

We also experiment with real blurry images which are blurred with unknown
kernels. In this part, we process blurry images with very large blurs to demonstrate
the robustness of our method. We recover the latent image from the observed
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Fig. 6 Cumulative distributions of error ratios with different methods on the dataset of [15]

Table 4 Quantitative comparison of different methods over the dataset of [15]

Success rate% Mean error ratio
Ours 96.56 2.1134
Yu et al. [22] 96.25 2.2047
Michaeli & Irani [16] 95.94 2.5662
Sun et al. [15] 93.44 2.3764
Xu & Jia [5] 85.63 3.6293
Levin et al. [7] 46.72 6.5577
Cho & Lee [4] 65.47 8.6901
Krishnan et al. [32] 24.49 11.5212
Cho et al. [31] 11.74 24.7020

blurry image by performing the non-blind deconvolution method of [29] in the
deblurring stage once the blur kernel has been estimated. Several methods are
terminated early during the iteration due to lack of memory caused by too large
the blur kernel. Figl9] shows a visual comparison example with the state-of-the-
art blind deconvolution methods [5,32,15033l18,19] on one blurred image from
Kohler et al.’s dataset [34], at the bottom of which are close-ups of different parts
of these images. The results illustrate a noticeable contrast improvement that
our method recovers sharper edges and more fine details with negligible artifacts,
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Fig. 7 Qualitative comparison of different methods on a cropped image from the synthetic
dataset of [15]
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Fig. 8 Qualitative comparison of different methods on another cropped image from the syn-
thetic dataset of [15]
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and achieves better visual quality, as it estimates more accurate blur kernels. We
observe from Fig. |§| that the deblurred images by Perrone et al. [9/[33] suffer from
ringing artifacts, and some fine details such as the fence and the lantern are not
properly recovered by Pan et al. [I8] and Yan et al. [19]. Figll0] gives another
visual comparison example with the state-of-the-art blind deconvolution methods
[BLB2,T5L16L9,33L22]. The size of the blur kernel can be automatically estimated
in the pre-processing stage. In the above examples, the sizes of the blur kernels are
empirically initialized to 151 x 151 and 91 x 91 respectively. Experimental results
on real blurry photographs with unknown large blurs validate that our method is
quite robust to deal with large blurs.

When the blur is close to or even wider than the edge, the structure of the
sharp edge will significantly change after blur. For such a highly blurred image,
insignificant edges do not always provide useful information and instead mistake
the kernel estimation. Nevertheless, large-scale structures are confused slightly by
the blur due to their salient edges and provide informative edges for blur kernel
estimation. Accordingly, it is more reasonable to obtain an accurate estimate of
the blur kernel relying on salient edges. For small blurs, most of the edges are
wider than the blur kernel and all helpful for kernel estimation besides salient
edges. In this case, the edge-based method proposed in this paper only has a
slight improvement over our previous method without considering salient edges
[22]. But for large blurs, since insignificant edges could disturb kernel estimation
and only salient edges around large-scale structures help kernel estimation, the
edge-based method can achieve much better deblurring results and successfully
handle severely blurred images.

5 Conclusion

In this paper, we have presented an edge-based blur kernel estimation method for
blind motion deblurring unifying sparse representation and self-similarity of edge
patches as image priors to guide the recovery of the latent image. We construct the
sparsity regularizer and the cross-scale non-local regularizer based on our patch
priors, exploiting thoroughly prior knowledge from similar patches across different
scales of the latent image, and incorporate these two regularizers into our blind
deconvolution model. We find that our regularizers prefer the sharp image to the
blurred one only around salient edges, and accordingly impose our regularizers on
salient edge patches of the image for blur kernel estimation. We have extensively
validated the performance of our method, and it is able to deblur images with
excessively large blur kernels.
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