Skip to main content

CAB-Net: Channel Attention Block Network for Pathological Image Cell Nucleus Segmentation

  • Conference paper
  • First Online:
  • 1681 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12889))

Abstract

In histopathological image analysis, cell nucleus segmentation plays an important role in the clinical analysis and diagnosis of cancer. However, due to the different morphology of cells, uneven staining and the existence of a large number of dense nuclei, it is still challenging to accurately segment the nucleus. In order to learn more specific key feature information during the training process, this paper proposed a network model called the CAB-Net that uses channel attention to enhance the learning of feature information on each channel. The network uses the channel attention mechanism to extract the key features in each channel, generates weights to judge the importance of the features, and then weights them into the original image. This aims to strengthen the extraction of key information, thereby generating a more characteristic feature map, and enabling the model to make more accurate judgments. We added a boundary smoothness constraint, in order to better identify cell nuclei with unclear boundaries and achieve more accurate cell nucleus segmentation. The experimental results show that the method in this paper achieves good performance on the cell segmentation data set.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of CVPR, pp. 2261–2269. CVPR (2017)

    Google Scholar 

  2. Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_46

    Chapter  Google Scholar 

  3. Garcia-Garcia, A., Orts, S., Oprea, S., Villena Martinez, V., Rodríguez, J.: A Review on Deep Learning Techniques Applied to Semantic Segmentation (2017)

    Google Scholar 

  4. Qu, H., Yan, Z., Riedlinger, G.M., De, S., Metaxas, D.N.: Improving nuclei/gland instance segmentation in histopathology images by full resolution neural network and spatial constrained loss. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 378–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_42

    Chapter  Google Scholar 

  5. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  7. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  8. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2011–2023 (2020). https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016) https://doi.org/10.1109/CVPR.2016.90

  10. Yu, F., Koltun, V., Funkhouser, T.A.: Dilated residual networks. In: Proceedings of CVPR, vol. 2, p. 3 (2017)

    Google Scholar 

  11. Jiang, F., Gu, Q., Hao, H.Z., Li, N., Guo, Y.W., Chen, D.X.: Survey on content-based image segmentation methods. Ruan Jian Xue Bao/J. Softw. 28(1), 160–183 (2017). https://doi.org/10.13328/j.cnki.jos.005136. (in Chinese)

  12. Macenko, M., Niethammer, M., Marron, J.S., et al.: A method for normalizing histology slides for quantitative analysis. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 1107–1110 (2009)

    Google Scholar 

  13. Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imaging (2019). https://doi.org/10.1109/TMI.2019.2947628

  14. Zhang, X., Xing, F., Su, H., Yang, L., Zhang, S.: High-throughput histopathological image analysis via robust cell segmentation and hashing. Med. Image Anal. 26(1), 306–315 (2015)

    Article  Google Scholar 

  15. Qu, H., Wu, P., Huang, Q., et al.: Weakly supervised deep nuclei segmentation using points annotation in histopathology images. In: International Conference on Medical Imaging with Deep Learning, pp. 390–400 (2019)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61873259,61821005), and the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019203), and the Education Department of Liaoning PResearch on Target Tracking Algorithm Based on Siamese Network (No.: LG201915); Shenyang Ligong University: Design and implementation of multi-target tracking algorithm based on deep learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijie Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Fan, H., Yang, D. (2021). CAB-Net: Channel Attention Block Network for Pathological Image Cell Nucleus Segmentation. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12889. Springer, Cham. https://doi.org/10.1007/978-3-030-87358-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87358-5_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87357-8

  • Online ISBN: 978-3-030-87358-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics