Skip to main content

Protecting Encrypted Video Stream Against Information Leak Using Adversarial Traces

  • Conference paper
  • First Online:
  • 2260 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12890))

Abstract

TLS protocol encryption hides the specific packet content but not the network characteristics. The adversary can determine the relevant information of the video through traffic analysis by using convolutional neural networks. In this paper, we propose a new novel defense mechanism that injects dummy packets into the video stream by pre-computing adversarial traces. Moreover, to deal with different network conditions, we offer two adversarial methods. 1) When the network condition is relatively single, applying traditional adversarial examples will play a good role in the effect with a small amount of bandwidth overhead. 2) When the network condition becomes more complex, we have no prior knowledge about upcoming network packets. Therefore, the traditional adversarial sample method that needs entire stream traces to calculate cannot be applied. To solve this problem, we take advantage of adversarial patches’ input-agnostic and location-agnostic properties to generate “universal” adversarial traces. We experimentally demonstrate that our defense methods are promising solutions in the underlying scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hayes, J., Danezis, G.: k-fingerprinting: a robust scalable website fingerprinting technique. In: USENIX Security Symposium (2016)

    Google Scholar 

  2. Gong, J., Wang, T.: Zero-delay lightweight defenses against website fingerprinting. In: 29th USENIX Security Symposium. USENIX Association, Boston (2020)

    Google Scholar 

  3. de la Cadena, W., et al.: Trafficsliver: fighting website fingerprinting attacks with traffic splitting. In: Proceedings of CCS (2020), pp. 1971–1985 (2020)

    Google Scholar 

  4. T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg, “Effective attacks and provable defenses for website fingerprinting,” in USENIX Security Symposium, 2014

    Google Scholar 

  5. Hou, C., Gou, G., Shi, J., Fu, P., Xiong, G.: Wfgan: Fighting back against website fingerprinting attack using adversarial learning. In: Proceedings of ISCC (2020), pp. 1–7. IEEE (2020)

    Google Scholar 

  6. Juarez, M., Imani, M., Perry, M., Diaz, C., Wright, M.: Toward an efficient website fingerprinting defense. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 27–46. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4_2

    Chapter  Google Scholar 

  7. Schuster, R., Shmatikov, V., Tromer, E.: Beauty and the burst: remote identification of encrypted video streams. In: USENIX Security Symposium (2017)

    Google Scholar 

  8. Rauber, J., Brendel, W., Bethge, M.: Foolbox: a python toolbox to benchmark the robustness of machine learning models. In: 34th International Conference on Machine Learning, Reliable Machine Learning in the Wild Workshop (2017). https://arxiv.org/abs/ 1707.04131

  9. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572v3 (2014)

  10. Brown, T.B., Mane, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch. arXiv preprint ’ arXiv:1712.09665 (2017)

  11. Li, P., Gao, D., Reiter, M.K.: Mitigating access-driven timing channels in clouds using stopwatch. In: 2013 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE (2013)

    Google Scholar 

  12. Liu, W., Gao, D., Reiter, M.K.: On-demand time blurring to support side-channel defense. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 210–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_12

    Chapter  Google Scholar 

  13. Martin, R., Demme, J., Sethumadhavan, S.: Timewarp: rethinking timekeeping and performance monitoring mechanisms to mitigate sidechannel attacks. In: ACM SIGARCH Computer Architecture News (2012)

    Google Scholar 

  14. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating fine grained timers in xen. In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop. ACM (2011)

    Google Scholar 

  15. Brickell, E., Graunke, G., Neve, M., Seifert, J.-P.: Software mitigations to hedge aes against cache-based software side channel vulnerabilities. IACR Cryptology ePrint Archive (2006)

    Google Scholar 

  16. Keramidas, G., Antonopoulos, A., Serpanos, D.N., Kaxiras, S.: Non deterministic caches: a simple and effective defense against side channel attacks. In: Design Automation for Embedded Systems (2008)

    Google Scholar 

  17. Xiao, Q., Reiter, M.K., Zhang, Y.: Mitigating storage side channels using statistical privacy mechanisms. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM (2015)

    Google Scholar 

  18. Zhang, X., Hamm, J., Reiter, M.K., Zhang, Y.: Statistical privacy for streaming traffic. In: Proceedings of NDSS 2019 (2019)

    Google Scholar 

  19. Cherubin, G., Hayes, J., Juarez, M.: Website fingerprinting defenses at the application layer. PoPETS 2017(2), 186–203 (2017)

    Google Scholar 

  20. Henri, S., Garcia-Aviles, G., Serrano, P., Banchs, A., Thiran, P.: Protecting against website fingerprinting with multihoming. PoPETS 2020(2), 89–110 (2020)

    Google Scholar 

  21. Cai, X., Nithyanand, R., Johnson, R.: Cs-buflo: a congestion sensitive website fingerprinting defense. In: Proceedings of WPES, pp. 121–130 (2014)

    Google Scholar 

  22. Cai, X., Nithyanand, R., Wang, T., Johnson, R., Goldberg, I.: A systematic approach to developing and evaluating website fingerprinting defenses. In: Proceedings of CCS, pp. 227–238 (2014)

    Google Scholar 

  23. Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T.: Peek-a-boo, i still see you: why efficient traffic analysis countermeasures fail. In: Proceedings of IEEE S&P, pp. 332–346. IEEE (2012)

    Google Scholar 

  24. Nithyanand, R., Cai, X., Johnson, R.: Glove: a bespoke website fingerprinting defense. In: Proceedings of WPES, pp. 131–134 (2014)

    Google Scholar 

  25. Wang, T., Cai, X., Nithyanand, R., Johnson, R., Goldberg, I.: Effective attacks and provable defenses for website fingerprinting. In: Proceedings of USENIX Security, pp. 143–157 (2014)

    Google Scholar 

  26. Wang, T., Goldberg, I. Walkie-talkie: an efficient defense against passive website fingerprinting attacks. In: Proceedings of USENIX Security, pp. 1375–1390 (2017)

    Google Scholar 

  27. Song, D., et al.: Physical adversarial examples for object detectors. In: Proceedings of WOOT (2018)

    Google Scholar 

  28. Wallace, E., Feng, S., Kandpal, N., Gardner, M., Singh, S.: Universal adversarial triggers for attacking and analyzing nlp. arXiv preprint arXiv:1908.07125 (2019)

  29. Wu, Z., Lim, S.-N., Davis, L., Goldstein, T. Making an invisibility cloak: real world adversarial attacks on object detectors. arXiv preprint arXiv:1910.14667 (2019)

  30. Papernot, N., Mcdaniel, P., Swami, A., Harang, R.: Crafting adversarial input sequences for recurrent neural networks. In: Proceedings of MILCOM, pp. 49–54. IEEE (2016)

    Google Scholar 

  31. Ren, S., Deng, Y., He, K., Che, W.: Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of ACL, pp. 1085–1097 (2019)

    Google Scholar 

  32. Wang, X., Jin, H., He, K.: Natural language adversarial attacks and defenses in word level. arXiv preprint arXiv:1909.06723 (2019)

  33. Kolosnjaji, B., et al.: Adversarial malware binaries: evading deep learning for malware detection in executables. In: Proceedings of EUSIPCO, pp. 533–537. IEEE (2018)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Natural Science Foundation of China NSFC [grant numbers 62072343, U1736211]. the National Key Research Development Program of China[grant numbers 2019QY(Y)0206].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengpan Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Ye, D. (2021). Protecting Encrypted Video Stream Against Information Leak Using Adversarial Traces. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87361-5_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87360-8

  • Online ISBN: 978-3-030-87361-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics