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Abstract. This paper presents a novel convolutional neural network for
multi-level classi�cation of surgical tools, with a set of property predic-
tions. Predictions are obtained from multiple levels of the model, and
high accuracy is obtained by adjusting the depth of layers selected for
predictions. Our architecture improves interpretability by providing a
comprehensive set of predictions for each tool, allowing users to make
rational decisions about whether to trust the model based on multiple
pieces of information. These predictions can be evaluated against each
other for consistency and error-checking. Important contributions of our
work are the interpretable multi-level architecture, a novel surgical tool
dataset, and a surgery knowledge base. This architecture provides a vi-
able solution for intelligent management of surgical tools in a hospital,
potentially leading to signi�cant cost savings and increased e�ciencies.

Keywords: Surgical tool dataset, multi-level predictions, hierarchical classi�ca-
tion, surgery knowledge base.

1 Introduction

Surgical tool and tray management is recognized as a di�cult issue in hospi-
tals worldwide. Stockert and Langerman [14] observed 49 surgical procedures
involving over two-hundred surgery instrument trays, and discovered missing,
incorrect or broken instruments in 40 trays, or in 20% of the sets. Guedon et al.
[4] found equipment issues in 16% of surgical procedures; 40% was due to un-
availability of a speci�c surgical tool when needed. Zhu et al. [21] estimated that
44% of packaging errors in surgical trays at a Chinese hospital were caused by
packing the wrong instrument, even by experienced operators. This is signi�cant
given the volumes; for example, just one US medical institution processed over
one-hundred-thousand surgical trays and 2.5 million instruments annually [14].

There are tens of thousands of di�erent surgical tools, with new tools con-
stantly being introduced. Each tool di�ers in shape, size and complexity � often
in very minor, subtle, and di�cult to discern ways, as shown in Fig.1. Surgi-
cal sets, which can contain 200 surgical tools, are currently assembled manually
[10] but this is a di�cult task even for experienced packing technicians. Given
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Fig. 1. Surgical tools - Ho�man Compact instruments and implants

that surgical tool availability is a mission-critical task, vital to the smooth func-
tioning of a surgery, ensuring that the tool is identi�ed accurately and in an
understandable manner is extremely important.

Interpretibility of predictions therefore is a critical issue � Rudin et al. [11]
stated that interpretable machine learning is about models that are understood
by humans, and interpretability can be achieved via separation of information
as it traverses through the CNN models. Zhang et al. [18] developed an inter-
pretable model that provided explicit knowledge representations in the convo-
lutional layers (conv-layers) to explain the patterns that the model used for
predictions. Linking middle-layer CNN features with semantic concepts for pre-
dictions provided interpretation for the CNN output [20] [13] [19]. The questions
around how mid-level features of a CNN represent speci�c features of surgical
tools and how they can be used to provide hierarchical predictions is the focus
of our work. CNNs learn di�erent features of images at di�erent layers, with
higher layers extracting more discriminative features [17]. By associating fea-
ture maps at di�erent CNN levels to the levels in a hierarchical tree, a CNN
model could incorporate knowledge of hierarchical categories and relationships
for better classi�cation accuracy. The model developed by Ferreira et al. [3]
addressed predictions across �ve categorisation levels: gender, family, category,
sub-category and attribute. The levels constituted a hierarchical structure, which
was incorporated in the model for better predictions. The bene�t of this heirar-
chical and interpretable approach for surgical tool management is that end users
can then make rational, well reasoned decision on whether they can trust the
information presented to them [11].

Wang et al. [16] discussed an approach to �ne tuning CNNs that used wider
or deeper layers of a network, and demonstrated that this signi�cantly out-
performed traditional approaches that used pre-trained weights for �ne-tuning.
Going deeper was accomplished by constructing new top or adaptation layers,
thereby permitting novel compositions without needing modi�cations to pre-
trained layers for a new task. Shermin et al. [12] showed that increasing network



Interpretable Deep Learning for Surgical Tool Management 3

depth beyond pre-trained layers improved results for �ne-grained and coarse
classi�cation tasks. We build on these approaches in our multi-level predictor.

2 Surgical Tool Dataset Overview

We developed our surgical dataset with a hierarchical structure based on the
surgical speciality, pack, set and tool. We captured RGB images of surgical
tools using a DSLR camera and a webcam to create the initial dataset. We
focused on two specialities � Orthopaedics and General Surgery � out of the 14
specialities reported by the American College of Surgeons [1]. The �rst of these
specialities o�ers a wide range of instruments, implants and screws, while the
second speciality covers common instruments used across all open surgery.

Table 1. Surgical Datasets

Characteristic CATARACTS Cholec80 Surgical Tools

Size or Instances 50 videos 80 Videos 18300 images
Database Focus Cataract Surgeries Cholecystectomy

Surgeries
Orthopaedics and
General Surgery

Type of Surgery Open Surgery Laparoscopic Open Surgery
Default Task Detection Detection Classi�cation
Type of Item Videos Videos RGB Images
Number of Classes 21 7 361
Images Background Tissue Tissue Flat colours
Image Acquisition
Platform / Device

Toshiba 180I cam-
era and MediCap
USB200 recorder

Not Speci�ed Canon D-80 Camera
and Logitech 922 Pro
Stream Webcam

Image Illumination Microscope Illumina-
tion

Fibre-optic in-cavity Natural Light, LED,
Fluorescent

Distance to Object V.Close - Microscope Close - in-cavity 30-cms to 60-cms
Annotations Binary Bounding Boxes Multiple level
Dataset Organisation 500,000 frames in

Training and 500,000
frames in Test Set

86,304 frames in
Training and 98,194
in Test Set

14,640 images in
Training and 3,660
in Validation set

Structure Flat Flat Hierarchical
Image Resolution 1920x1080 pixels Not Speci�ed 600 x 400 pixels

CNNs have been successfully used for the detection, segmentation and recog-
nition of objects in images, including surgical tools detection [8]. However, the
datasets currently available for surgical tool detection present very small in-
strument sets; to illustrate this, the Cholec80, EndoVis 2017 and m2cai16-tool
datasets have seven instruments, the CATARACTS dataset has 21 instruments,
the NeuroID dataset has eight instruments and the LapGyn4 Tool Dataset has
three instruments [2] [15]. While designing and testing CNNs to recognise seven
or eight instruments for research purposes may be justi�able, this is entirely in-
adequate for real work conditions. Any model trained using such small datasets
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is unlikely to be usable anywhere else, not even in the same hospital six months
later. We needed to develop a new surgical tool dataset that provided a large
variety and number of tools for analysis, and which was arranged hierarchically.
A comparison of our dataset with CATARACTS [2] and Cholec80 [15], two im-
portant publicly available datasets, is presented in Table 1.

Kohli et al. [6] and Maier-Hein et al. [9] discussed the problems faced by
the machine learning community stemming from a lack of data for medical im-
age evaluation, which signi�cantly impairs research in this area. There is just
not enough high quality, well annotated data � representative of the particular
surgery � and this is a shortfall that needs to be addressed. Currently, most
of the medical datasets are one-o� solutions for speci�c research projects, with
limited coverage and are restricted in terms of size to hundreds � rather than
thousands � of images or data points [9]. We therefore plan to create and curate a
large surgical tool dataset of tens of thousands of tool images across all surgical
specialities, with high quality annotations and reliable ground-truth informa-
tion. Since surgery is organised along specialities, each with its own categories,
a hierarchical classi�cation of surgical tools would be extremely valuable.

Table 2. Surgery Knowledge Representation (Excerpt)

Speciality Pack Set Tool

Orthopaedics VA Clavicle Plating Set LCP Clavicle Plates Clavicle Plate 3.5
8 Hole Right

Orthopaedics Trimed Wrist Fixation
System

Trimed Wrist Fixation
Fragment Speci�c

Dorsal Buttress
Pin 26mm

General
Surgery

Cutting and Dissecting Scissors 9 Metzenbaum
Scissors

General
Surgery

Clamping and Occluding Forceps 6 Babcock Tissue
Forceps

2.1 Surgery Knowledge Base

To complement the dataset, we developed a comprehensive surgery knowledge-
base (Table 2) as an attribute-matrix which makes rich information available to
the training regime. This proved to be a convenient and useful data structure
that captures rich information of class attributes � or the nameable properties
of classes � and makes it readily available for computational reasoning [7]. We
developed the knowledge representation structure for 18,300 images to provide
rich, multi-level and comprehensive information about each image. The attribute
matrix data structure proved to be easy to work with, simple to change and
update, and it also provided computational e�ciencies.
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Fig. 2. Resnet50V2 Architecture with Multiple Outputs

3 Experimental Method

We implemented our system in Tensor�ow v-2.4.1 and Keras v-2.4.3. We created
data-frames for the training and validation data, with paths to the images and
the annotations for each of the multiple outputs in the form of columns for each
output. The dataset annotations contained categorical variables in the form of
text values, representing the multiple classes for each output. We used one hot
encoding to represent the categorical variables in a suitable format for our model.
Our model was designed to provide four multi-level outputs for each image input,
and we developed a custom data handler to provide the training data (x set)
along with labels for each of the four outputs (y cat, y pack, y set, y tool). We
then used train and validation data generators based on our custom data handler
to provide batches of data to the model.

Our architecture consists of a ResNet50V2 network [5] as base network. We
initialised the model using weights obtained by pre-training the ResNet50V2
model on the Surgical Tool test dataset. The base network was then frozen for
all experiments. We added separate classi�cation pipelines to the base network,
one for each prediction of interest - speciality, set, pack and tool (See Fig. 2).
Prediction pipelines were built by obtaining outputs from the activation layers
at speci�c blocks. We did not get good results with global average pooling, but
a global max pooling layer and dense layer formed an e�ective pipeline. We used
categorical cross-entropy as the loss and categorical accuracy as the metric for
each output provided the best results. The model was compiled with one input
(image) and four outputs.

We tested outputs at di�erent layers to evaluate the impact of changing the
depth of the network, and our results are presented in Table 3. In each experi-
ment, all the predictions were obtained from the same level of the Resnet50V2
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Table 3. Results - Val accuracy with output at di�erent layers

All Outputs at: Total Param-
eters

Parameters
Trained

Speciality Pack Set Tool

Conv2 700,570 686,490 0.956 0.356 0.258 0.091
Conv3 1,210,266 948,634 0.989 0.621 0.507 0.231
Conv4 3,060,634 1,472,922 0.997 0.927 0.851 0.663
Conv5 11,625,370 2,521,498 0.999 0.975 0.945 0.890

model, and both the total number of parameters available to train and the
number of parameters actually trained are controlled by adjusting the num-
bers of layers included in the model. Outputs were obtained early in each block
(conv"X"_block1_1_relu). An operation within a block in ResNet50V2 consists
of applying convolution, batch normalisation and activation to an input, and we
obtain our outputs after the �rst operation in each block. These outputs were
fed to the external global max pooling and dense layers. A dropout layer was
used to regulate training � replacement with a batch normalisation layer did not
improve results. A dense layer with softmax activation was used for the �nal
classi�cation of each multi-class prediction, customised to the relevant number
of classes. As we expected, better results were obtained by including more layers
and by training more parameters � best results were obtained by including all
layers up to Block 5 of the ResNet-50V2 model. However, it is noteworthy that
high accuracy was obtained for speci�c predictions even early in the model � for
example, predictions for speciality were at 95.6% by block 2, for pack and set
were at 92.7% and 85.10% at block 4 and for tool at 89% at block 5. Clearly it
was possible to disentangle information as it traverses the CNN and to obtain
predictions for higher level categories using early layers of the model. This is
explored further in our next set of experiments with the objective of improving
interpretability for the end user, while reducing the total number of parameters
that needed to be trained in the model.

Table 4. Training Con�guration

Parameter Optimiser Learning
Rate

Batch
Size

Activation Loss

Value Adam 0.001 64 Softmax Categorical
Crossentropy

Our prototype system was trained on the surgery dataset and knowledge base,
which captured two specialities, twelve packs, thirty-�ve sets and 361 possible
tools. Real time training data augmentation was conducted on the test set,
including horizontal �ip, random contrast and random brightness operations.
We experimented with SGD but �nalised on the con�guration as shown in Table
4. The initial learning rate of 0.001 was decreased to 0.00001 at epoch 45 and
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Fig. 3. Interpretable multi-level predictions

to 0.000005 at epoch 75. A dropout rate of 0.2 was imposed. We implemented
early stopping on val loss with a patience of 20 epochs. The total parameters
in the model were 10,511,258, and parameters trained were 1,407,386 in each of
the experiments.

1. ImageNet Training: We trained the model with the four classi�cation pipelines
with ImageNet weights with early stopping implemented for validation loss.
The base model was frozen, and the four separate classi�cation outputs were
trained, one for each hierarchy � speciality, set, pack and tool.

2. Surgical Tool Training: We pre-trained the ResNet50V2 model on the Sur-
gical Tool test dataset, by replacing the top layer with a dropout and dense
layer with 361 outputs. We used only the tool labels with the training con-
�gurations as in Table 4 with early stopping on validation loss. We saved
this model after training and used it as the base model. We froze the base
model, and trained the model with its four classi�cation pipelines.

3. Depth Adjusted Surgical Tool Training: We used the pre-trained surgical tool
weights, but changed the levels within the blocks of the ResNet50V2 model
from which we obtained outputs, thereby adjusting the depth of training. The
outputs from Block 5 and 2 were obtained from conv"X"_block1_1_relu,
and from Block 3 and 4 were from conv"X"_block4_2_relu. We did this to
evaluate the e�ects of changing depths within the CNN on the prediction
accuracy; this was a minor change within the block but the total number of
parameters trained were controlled and maintained the same.

4 Results and Conclusions

Our results, on a separate test subset of data, are shown in Table 5. The test data
was images that the model had not seen before, as a sample of 400 random images
across all classes had been reserved for testing. Training with ImageNet weights
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Table 5. Architecture Results - Macro score or average for all classes

Level Metric ImageNet Surgical-
Tools

Surgical-Tools
Depth Adjusted

Speciality Accuracy score 0.90 0.94 0.94
Hamming Loss 0.10 0.06 0.06
F1 Score 0.73 0.84 0.83
Precision score 0.93 0.95 0.95
Recall score 0.96 0.99 0.99

Pack Accuracy score 0.41 0.63 0.77
Hamming Loss 0.59 0.37 0.23
F1 Score 0.25 0.53 0.73
Precision score 0.43 0.67 0.76
Recall score 0.30 0.55 0.73

Set Accuracy score 0.31 0.84 0.89
Hamming Loss 0.69 0.16 0.11
F1 Score 0.24 0.79 0.84
Precision score 0.36 0.82 0.85
Recall score 0.25 0.80 0.87

Tool Accuracy score 0.20 0.90 0.90
Hamming Loss 0.80 0.10 0.10
F1 Score 0.16 0.86 0.86
Precision score 0.78 0.91 0.91
Recall score 0.27 0.91 0.90

did not provide good results, but the use of surgical tool weights demonstrated
that the model had captured relevant information about the dataset and was
able to provide good predictions at multiple levels.

In this architecture, by extracting multiple predictions along layers from
coarse to �ne as data traverses the CNN, early layers provided predictions corre-
sponding to specialities while later layers provide �ner predictions, such as tool
classi�cations. Adjusting the depths of layers used as outputs for predictions
improved the results, even within the same block, demonstrating that more fea-
tures are learned as the data travels through the CNN layers. It was visually
easy for the CNN to distinguish between our two speciality classes, since Gen-
eral Surgery tools are signi�cantly di�erent visually from orthopaedic tools � as
we add more specialities where the visual distinction is not so clear, we may
need to train at deeper levels. As the number of classes increased to 12, and
35 and 361 for pack, set and tool respectively, predictions from deeper layers
were needed. These hierarchical predictions can provide better interpretability
since multiple predictions � as presented in Fig. 3 � can be tested and evaluated
against each other for consistency or error by the end user. Since the user has
multiple pieces of information, decomposed into sub-parts or sub-predictions,
they are in a better position to make trust based, well informed �nal decisions.
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The multi-level model provides a simple and practical solution for surgical
tool management by capturing and presenting relevant predictions as informa-
tion travels through the CNN. This multi-level prediction system can provide
a good solution for classi�cation of other types of medical images, if they are
hierarchically organised with a large number of classes.
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