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Abstract. This work explores models of opinion dynamics with opinion-
dependent connectivity. Our starting point is that individuals have lim-
ited capabilities to engage in interactions with their peers. Motivated by
this observation, we propose a continuous-time opinion dynamics model
such that interactions take place with a limited number of peers: we re-
fer to these interactions as topological, as opposed to metric interactions
that are postulated in classical bounded-confidence models. We observe
that topological interactions produce equilibria that are very robust to
disruptions.

Keywords: Opinion dynamics · Limited attention · Nonsmooth dynam-
ical systems.

1 Introduction

Driven by the evolution of digital communication and social networking services,
there is an increasing interest for mathematical models of opinion dynamics
in social networks. Among the many models proposed in the literature, a few
have become popular in the control community [27, 26]. In the perspective of
the control community, opinion dynamics distinguish themselves from consensus
dynamics because consensus is prevented by some other feature of the dynamics.
In many popular models, this feature is an opinion dependent limitation of the
connectivity. Chief examples are bounded confidence models [22, 16], where social
agents influence each other iff their opinions are closer than a threshold.

This way of defining influence assumes that agents have always access to
the opinions of all fellow agents and may lead to agents being influenced by a
large number of their fellows, possibly the whole population. Instead, the number
of possible interactions is bounded in practice by the limited time and efforts
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that individuals can devote to social interactions. Similar limitations of attention

are well documented in psychology and sociology, for instance by the notion of
Dunbar number [18], and become evermore crucial in today’s age of information
bonanza [21]. Indeed, in online social media, natural limitations of attention
interplay with the way the online platforms are designed. Users interact via the
contents they share: out of the pool of fresh contents, the online platform selects
for each user the best contents in order to maximize engagement, mainly based
on similarities between users [23]. As the notion of Dunbar number was originally
defined with reference to primates, the reader will not find surprising that similar
ideas have also been fundamental in the study of flocking in animal groups, as
testified by numerous theoretical and experimental works [5, 20, 15, 24, 3]. The
importance of considering networks where the number of neighbors is limited
has also been understood by graph theorists, who have studied the properties of
what they call k-nearest-neighbors graph: for instance, it is known that k must
be logarithmic in n to ensure connectivity [4].

However, few works have incorporated this important observation in suitable
models of opinion dynamics. Before surveying these important references, we
briefly describe the contribution of this paper. In our effort to make the case
for limited attention in opinion dynamics, we study a simple continuous-time
model (first appeared in the survey paper [2]) in which every agent is influenced
by her closest k nearest neighbors. In this paper, we provide some preliminary
results about this continuous-time dynamics. Our results concentrate on two
axes: studying the main properties of its equilibria, including their robustness
to disruptions, and proving convergence results in special cases. We describe the
equilibria of the dynamics, distinguishing a special type of clusterization equi-
libria that are constituted of separate clusters, and we discuss the robustness of
clustered equilibria to disruptions, such as the addition of new agents. Regarding
the question of convergence, we are able to provide a proof in two cases: when
the total number of agents n is small enough compared to number of neighbors
k, namely n ≤ 2k + 1, and when k = 1, that is, agents are only influenced by
one “best friend”.

The difficulties in studying k-nearest-neighbors dynamics originate from two
key features: (1) interactions are not reciprocal; (2) whether two agents interact
does not only depend on their two states, but also on the states of all the other
agents. In the literature, models with any of these features are still relatively
few. In classical bounded confidence models [22, 16], interactions are reciprocal
as long as the interaction thresholds are equal for all agents [22, 7, 8, 10, 9], and
any lack of reciprocity makes the analysis much more delicate [25, 12, 14]. In our
model, not only interactions are non-reciprocal, but they are also non-metric:
whether two agents interact is not solely determined by the distance between
their two opinions. For this reason, we follow a consolidated tradition [5] and
refer to our connectivity model where agents can interact with their k nearest
neighbors as topological.

Topological interactions are becoming increasingly popular in the applied
mathematics community, especially for second order models [13]. Kinetic and
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continuum models with topological interactions are also actively studied [6, 31,
17]. Among first order “opinion” models, [1] has recently used Petri nets to define
a class of models where interactions depend on the opinions of multiple agents:
despite some similarities, our model does not belong to this class. In our recent
papers [29, 28], we have studied two dynamics with asynchronous updates (with
and without sub-sampling, respectively) that are discrete-time counterparts of
the model we propose here. Finally, our contribution here differs from the one
of [2] as the latter focuses on specific properties of the equilibria, such as the
distribution of their clusters’ sizes, studied by extensive simulations, whereas we
are interested in analytical results about dynamical properties like convergence
to the equilibria and about their robustness to perturbations. Our robustness
analysis is inspired by the approach taken in [7] for bounded confidence models.

The rest of this paper has the following structure. Section 2 introduces the
model, Section 3 develops its analysis, and Section 4 discusses our results.

2 Mathematical model

Let n and k be two integers with

1 ≤ k < n,

and let V = {1, . . . , n} be the set of agents. Each agent is endowed with a scalar
opinion xi ∈ R. For every agent i ∈ V , her neighborhood Ni is defined in the
following way. The elements of V \{i} are ordered by increasing values of |xj−xi|;
then, the first k elements of the list (i.e. those with smallest distance from i) form
the set Ni of current neighbors of i. Should a tie between two or more agents
arise, priority is given to agents with lower index. Note that Ni depends on the
state, namely one should write Ni(x(t)): nevertheless, we omit to explicitly write
the dependence of Ni on the state. Based on the current definition of Ni, agent
i’s opinion evolves according to

ẋi =
∑

ℓ∈Ni

(xℓ − xi) (1)

We denote by F (x) the righthand side of (1). In order to describe the inter-agent
interactions allowed by a state x ∈ R

n, it is convenient to define the directed
graph

G(x) = (V,E(x)) with E(x) =
⋃

i∈V

{(i, j), j ∈ Ni} ,

where Ni is the set of neighbors of i. Clearly, if k = n − 1 the graph G(x) is
complete (up to self-loops). In using some simple graph theory in this paper, we
take some background and standard jargon for granted: a concise summary can
be found in [19, Ch. 1]. The chosen tie-breaking rule makes the right-hand side
F (x) well defined for any x ∈ R

n. The neighborhoods depend on the current state
and, therefore, on time. This fact makes dynamics (1) a piecewise-continuous
system [11]. Its solutions shall be intended in a semi-classical sense, that is, as
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piecewise-smooth solutions φ(t) such that the right-derivative of the solution is
equal to the right-hand side at all times, that is,

lim
h→0+

φ(t+ h)− φ(t)

h
= F (φ(t)) for all times t.

We conjecture that a forward complete and unique solution exists from every
initial condition: a rigorous verification of this fact, which is assumed to hold
true in the rest of this paper, is left to future work. Note that choosing a more
general notion of solutions, e.g. Caratheodory’s, would prevent unicity and the
produced multiple solutions would make the subsequent analysis more delicate.

3 Analysis

This section details our results on dynamics (1). We first study equilibria, then
convergence properties, and finally reconsider equilibria to study their stability.

3.1 Equilibria

A cluster is a subset of agents that have the same opinion: C ⊂ V such that
xi = xj for all i, j ∈ C. A state x is called clusterization if every agent belongs
to a cluster of at least k + 1 elements. Finally, a clusterization with only one
cluster is said to be a consensus.

A state x ∈ R
n is said to be an equilibrium for (1) when the right-hand side

F (x) is zero. For any i ∈ {1, . . . , n}, it is immediate to see that ẋi = 0 if i

belongs to a cluster of at least k + 1 elements. This condition is also necessary
when i is the index of the smallest or of the largest component. Therefore, all
clusterizations are equilibria and all non-consensus equilibria have at least two
clusters of at least k+ 1 elements, but not all equilibria are clusterizations. It is
possible to obtain a simple counterexample by considering k = 2 and n = 7 with

x1 = x3 = x5 = 0 , x7 =
1

2
, x2 = x4 = x6 = 1. (2)

Note that this example exploits the tie-breaking rule. However, this is not nec-
essary, as the following example shows: consider k = 4 and n = 14 with

x1 = x2 = x3 = x4 = x5 = 0 ,

x6 = x7 =
2

5
, x8 = x9 =

3

5
,

x10 = x11 = x12 = x13 = x14 = 1.

3.2 Dynamical properties

We can readily observe that, for any two agents i and j,

d

dt
(xi − xj) =

∑

ℓ∈Ni\Nj

(xℓ − xi)−
∑

m∈Nj\Ni

(xm − xj)− |Ni ∩Nj | (xi − xj). (3)
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This formula allows us to derive a few consequences. First, we observe that if
Ni(t) = Nj(t) for all t ≥ t0, then xi − xj → 0. Second, we can deduce that the
dynamics preserves the order of the agents.

Proposition 1 (Order preservation). If xi(t0) > xj(t0), then xi(t) > xj(t)
for all t ≥ t0.

Proof. Observe that (3) can be rewritten as

d

dt
(xi − xj) =

∑

ℓ∈Ni\Nj

xℓ −
∑

ℓ∈Nj\Ni

xm − k(xi − xj)

≥ −k(xi − xj),

where the inequality holds because |Ni \ Nj| = |Nj \ Ni| and xℓ ≥ xm for any
ℓ ∈ Ni \Nj and m ∈ Nj \Ni. By this bound and Gronwall lemma, xi−xj cannot
reach zero in finite time. ⊓⊔

As a consequence of this property, we can assume from now on with no loss
of generality that the agents are sorted in ascending order of opinions, that is,
xi(t) ≤ xi+1(t) for all i ∈ {1, . . . , n− 1} and all t ≥ 0. The following proposition
formally justifies this fact.

Proposition 2 (Re-ordering agents). Let x(t) be a solution and σ be a per-

mutation on the index set {1, . . . , n}. Assume that for all pairs of distinct indices

i, j the permutation satisfies σ(i) < σ(j) if either xi(0) < xj(0) or xi(0) = xj(0)
and i < j. Then, the following facts hold true:

1. xσ(i)(t) = xi(t) for all i ∈ {1, . . . , n} and for all t ≥ 0;
2. if σ(i) < σ(j), then xσ(i)(t) ≤ xσ(j)(t) for all t ≥ 0.

Proof. To verify the first claim, notice that the definition of σ does not interfere
with the tie-breaking rule that is used in the definition of the neighborhoods,
therefore Nσ(i) = Ni and the dynamics of the agent that before the permutation
had index i is unchanged.

To verify the second claim, observe the following facts. If xσ(i)(0) < xσ(j)(0),
then xσ(i)(t) < xσ(j)(t) for t > 0 by Proposition 1. If xσ(i)(0) = xσ(j)(0), then
Nσ(i) = Nσ(j) and therefore xσ(i)(t) = xσ(j)(t) also for t > 0 by (3). ⊓⊔

From now on we will assume that agents are sorted in ascending order. We
can now deduce a convergence result for small groups.

Proposition 3 (Consensus for small groups). If n ≤ 2k + 1, then x(t)
converges to a consensus.

Proof. Since n ≤ 2k + 1, the two agents with lowest and highest opinion share
at least one neighbor. Therefore, their difference evolves according to

d

dt
(xn − x1) =

∑

ℓ∈Nn\N1

(xℓ − xn)−
∑

ℓ∈N1\Nn

(xℓ − x1)− |N1 ∩Nn| (xn − x1)

≤ −(xn − x1),

which implies exponential convergence to zero by Gronwall lemma. ⊓⊔
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Simulations suggest that the dynamics converge also for larger groups, though
not necessarily to consensus; see Figure 1.
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Fig. 1. Two typical evolutions of the dynamics with k = 3 from random initial condi-
tions. We observe convergence to consensus for n = 7 (left) and to a clusterization for
n = 30 (right). The non-smooth nature of the trajectories is also very visible.

3.3 Special case k = 1

In the case k = 1, the dynamics takes the form

ẋi = xcl[i] − xi i ∈ {1, . . . , n},

where cl[i] denotes the index of the closest agent to i. This specific form has
three important consequences.

Lemma 1. If k = 1, then the following facts hold true.

1. All equilibria are clusterizations.

2. For every x ∈ R
n, the interaction graph G(x) is the union of weakly con-

nected components, such that each component contains exactly one circuit of

length 2 and the two nodes of the circuit can be reached from all nodes of the

component.

3. Two disconnected components cannot become connected in the evolution.

Proof. Claim 1: We observe that the only possibility for the right-hand side to
be zero is that xcl[i] = xi for all i.

Claim 2: Observe that cl[i] can only be equal to either i−1 or i+1, except for
the extreme agents, for which necessarily cl[1] = 2 and cl[n] = n− 1. Therefore,
the sequence δi = cl[i] − i is such that δ1 = 1 and δn = −1 and must therefore
change sign an odd number of times. Where it changes from positive to negative,
there is a pair of reciprocal edges; where it changes from negative to positive,
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there is a disconnection. Therefore, every connected component has a pair of
nodes that are connected to each other and that can be reached through a
directed path from all other nodes. See Figure 2 for an illustrative example.

Claim 3: Let there be a disconnection between j and j + 1. Then,

d

dt
(xj+1 − xj) = (xj+2 − xj+1) + (xj − xj−1) ≥ 0,

implying that the distance xj+1 − xj cannot decrease. Moreover,

d

dt
(xj − xj−1) = −(xj − xj−1)− (xcl[j−1] − xj−1) ≤ 0,

because the second term either is negative or, if positive, must be smaller or
equal in magnitude than xj − xj−1. Therefore, xj − xj−1 cannot increase. Since
an analogous reasoning implies that xj+2 − xj+1 cannot increase, the two com-
ponents cannot become connected in the future. ⊓⊔

1 2 3 4 5 6

Fig. 2. Example of weakly connected component of graph G(x).

These facts allow to draw a conclusion about convergence.

Proposition 4 (Clusterization). If k = 1, then x(t) converges to a clusteri-

zation.

Proof. The third statement of Lemma 1 implies that weakly connected compo-
nent can only split. Since the number of individuals is finite, the splitting process
terminates with a finite number of constant weakly connected components. After
that termination time, the topology does not change. Since each connected com-
ponent has a globally reachable node, then each group of agents is guaranteed
to converge to consensus [19, p. 61], therefore producing a clusterization. ⊓⊔

Unfortunately, the idea of the proof of Proposition 4 does not extend to
k > 1, because in general disconnected components can become connected.

3.4 Stability and robustness of equilibria

It is easy to see that non-clusterization equilibria are not stable in general. For
instance, consider example (2) with a small perturbation on agent 7: the ensuing
dynamics leads to a clusterization with two clusters. Instead, clusterizations
exhibit several stability properties.
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We shall begin by considering small perturbations of the opinions. We say
that a clusterization state is structurally stable if, after a perturbation, the dy-
namics converges to another clusterization that has the same clusters (though
not necessarily taking on the same opinion values). More formally, the clusteri-
zation x̄ is said to be structurally stable if there exists a neighborhood of x̄ such
that, for every y′ in that neighborhood, any solution issuing from y′ converges to
a clusterization ȳ that has the following property: for any pair i, j of individuals,
x̄i = x̄j if and only if ȳi = ȳj.

Proposition 5 (Structural stability of small clusters). A clusterization is

structurally stable if and only if all of its clusters have cardinality not larger than

2k + 1.

Proof. If all clusters have cardinality not larger than 2k+1, then after the pertur-
bation Proposition 3 can be applied. To prove the opposite implication, observe
that if one cluster has cardinality at least 2k+2, then a suitable perturbation can
split it into two separate clusters of cardinality at least k + 1, thereby creating
a clusterization with different structure. ⊓⊔

We shall also consider different kinds of disruptions, namely the addition or
removal of one agent. We say that a clusterization is stable to these disruptions
if, after the addition or removal of an agent, the other agents do not change their
opinion.

Proposition 6 (Stability to removals). A clusterization is stable to removals

if and only if all of its clusters have cardinality larger than k + 1.

Proof. It is clear that agents in a cluster remain at equilibrium after the removal,
unless the cluster size goes below the threshold k + 1. ⊓⊔

Proposition 7 (Stability to additions). Every clusterization is stable to ad-

ditions.

Proof. Agents within a cluster of size at least k+1 will not be influenced by any
new arrival. ⊓⊔

4 Conclusion

The stability properties of the equilibria of dynamics (1) should be contrasted
with the lack thereof shown by the equilibria of the corresponding metric bounded
confidence model, which reads as

ẋi =
∑

ℓ:|xℓ−xi|<d

(xℓ − xi), (4)

where d > 0 is an interaction radius. It is well-known [8, 10] that this dynamics
converges to clusterizations. If a new agent is added to such a clusterization,
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either the new agent is too far apart from the original agents and nothing hap-
pens, or the new agent falls within the visibility radius from a cluster. In the
latter case, the new agents and the agents in the cluster influence each other and
therefore change their opinions, converging to a common intermediate value. Ac-
tually, if the new agent falls within the visibility radius of two clusters, the two
clusters eventually merge.

In contrast, clusters produced by (1) are much more stable. In our opinion,
this stability intriguingly reminds the stability that is exhibited by norms and
organizations in societies. Indeed, sociologists and ethologists have observed since
a long time [32, 33, 30] that social norms and social structures are typically rather
stable across time, despite the fact that the composition of the social groups
evolve, notably with the arrival of new members. Our insights about k-neighbor
interactions suggest that limitations of attention can have stabilizing effects in
societies.

Acknowledgements

The authors are grateful to Emiliano Cristiani, Julien Hendrickx, Samuel Martin,
Benedetto Piccoli and Tommaso Venturini for fruitful discussions that, along the
years, have shaped their point of view on the topic of this paper.

References

1. Angeli, D., Manfredi, S.: A Petri net approach to consensus in networks with joint-
agent interactions. Automatica 110, 108466 (2019)
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