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Abstract. This paper addresses the problem of Current Sharing (CS)
and Average Voltage Regulation (AVR) in Direct Current (DC) micro-
grids composed of several interconnected Distributed Generation Units
(DGUs), power lines and loads. To achieve the control objectives (CS
and AVR), the system is augmented with distributed integral actions. A
distributed-based static state feedback control architecture is proposed.
This latter guarantees the global asymptotic convergence of the system
state to the set of all equilibrium points for which the control objectives
are achieved, thanks to the passivity property of the DGU with local
controller. Simulation results are provided to illustrate the effectiveness
of the proposed methodology.

Keywords: Distributed Control · Multi-Agent Systems · DC Micro-
grids.

1 Introduction

Microgrids (MG) are a novel concept of distributed electrical network that can
be composed of several interconnected power supplies and loads. This concept
represents an efficient key component to simplify the integration of renewable
energy sources. Moreover, Direct Current (DC) MGs have received an increasing
interest in power system control engineering community. This growing interest
is due to its efficiency, simplicity and wide range of applicability [2] [4].
Effective control strategies are needed to achieve high performance operation and
ensure the stability of the MG. These objectives require not only local manage-
ment but also cooperation between the interconnected Distributed Generation
Units (DGUs) and loads [4].
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Common problems in the control of DC MG are Current Sharing (CS) and Volt-
age Regulation (VR). CS or, equivalently, load sharing aims to share proportion-
ally the current demand between the different DGUs taking into consideration
their power capacity. VR aims to guarantee a certain voltage level for the loads
since this latter must be supplied by a nominal value of voltage under any per-
turbation [9]. Achieving these goals is an arduous and generally impossible task
as the CS requires a voltage deviation from its reference values. Therefore, an
alternative is to provide an average voltage regulation (AVR), i.e., the average
values of voltages at the Points of Common Coupling (PCC) is equal to the
average of its references [1].
Many works are presented in the literature to control DC MGs. Generally, the
main difficulty is to guarantee global stability when CS and AVR objectives are
simultaneously considered. In [7] and [9], only voltage stabilization is consid-
ered. Moreover, in [10] and [5], the aforementioned objectives are considered but
without proof of global convergence.

In this paper, a new distributed methodology to control DC-MG is proposed
where each element of the MG has its controller and exchanges information with
its neighbors over a communication network. The novelty of this work is the use
of two distributed integral actions to achieve both AVR and CS objectives. In
addition, the proposed control approach is LMI-based which makes it attractive
numerically. Finally, the use of passivity of interconnected systems to prove the
global asymptotic convergence allows to extend the result to more general MG-
problems, e.g., MG with Storage Units, etc.

The paper is organized as follows: in Section 2, some notation and preliminar-
ies are given. In Section 3, the general framework of the studied DC-MG model
is presented. The control objectives are detailed in Section 4. In Section 5, inte-
gral actions are considered to deal with the control objectives, the design of the
proposed distributed control is presented. In Section 6, the simulation results
are presented. Finally, Section 7 concludes the paper.

2 Notation and Preliminaries

Notation: The symbols, R and R>0 stand respectively for the set of real and
positive real numbers. To simplify notation we denote a column vector as an
n-tuple (x1, x2, · · · , xn) whose entries xi can be also column vectors or equiva-

lently (x1, x2, · · · , xn) =
[
xT1 xT2 · · · xTn

]T
. The notation In is used to denote the

identity matrix of the size (n × n). The transpose of a matrix A is denoted by
AT . The vector of dimension n with all components equal 1 is denoted 1n. 0m×p
stands for the zero matrix of the size (m×p). The empty set is represented by ∅.
The symbol ⊗ represents the Kronecker product. The notation diag(A1, ..., An)
denotes the block diagonal matrix having the matrices A1 to An on the diagonal
and 0 every where else.
Convergence to a Set: If d(x, y) denotes a distance in a metric space, the dis-
tance of a point x to a set S is defined by: d(x, S) = infy∈S d(x, y). A trajectory
x(·) is said to converge asymptotically to a set S if lim

t→+∞
d(x(t), S) = 0.
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Passivity theory: A linear system (A,B,C) is strictly passive [3] if there exists
a matrix P = PT > 0 and a scalar ε > 0 s.t.: ATP + PA < −εP , PB = CT .

3 DC Microgrid Model

In this work we consider, a DC-MG composed of N distributed Generation Units
(DGUs) connected through q resistive power lines. A simple electrical scheme
example of the considered model is shown in Fig. 1. The generic energy source of

Ri Ii Li

Rlij

Ilij

Rlij′
Ilij′

Ci

+

−
Vi RLi

PCCi

ILi

DC/DC

DGUi Power lineij

−

+

ui

Fig. 1. The considered electrical scheme of the DC Microgird with DGUs and power
lines.

each DGU is modeled as a DC voltage source that supplies a local load through a
DC-DC converter. The local load is connected to the Point of Common Coupling
(PCC) through an RLC (low-pass) filter. Furthermore, two types of local load
are considered, Resistive load RLi and unknown constant current source ILi.
The model of the DGUi is described by the following dynamic equations:

DGUi

Liİi = −RiIi − Vi + ui,

CiV̇i = Ii − ILi − Vi
RLi
−

∑
j∈Npowi

1
Rlij

(Vi − Vj). (1)

where Ii is the generated current, Vi is the voltage at the PCC near the DGUi, Ilij
is the power line current, Li and Ri are, respectively, the output filter inductance
and resistance, Ci is the output shunt capacitor, RLi is the local resistive load,
Rlij is the power line resistance and N pow

i denotes the set of nodes connected,
respectively, by power lines to the i-th DGU.

The DC power network is represented by a connected and undirected graph
Gpow = (Vpow,Lpow) (see [6] for more details about graph theory). The nodes,
Vpow = {1, ..., N}, represent the DGUs. The topology of the power network is
represented by a weighted Laplacian matrix Lpow ∈ RN×N whose elements are
related to the coupling term

∑
j∈Npowi

1
Rlij

(Vi − Vj) in (1).
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The overall microgrid system for all the DGUs can be written, compactly, as:

MG

{
Lİ = −RI − V + u,

CV̇ = I −R−1L V − LpowV − IL,
(2)

where I, V , IL, u ∈ RN . As well, C, RL, R, L ∈ RN×N are positive definite
diagonal matrices, e.g, L = diag(L1, · · · , LN ).

4 Motivation and Problem Formulation

First, we present the considered control objectives. When sharing current be-
tween several supplies, the current demand should be shared proportionally, but
not necessarily equally.

Objective 1. (Current Sharing) At steady state, currents need to fulfill the
following requirement

lim
t→∞

ωiIi = ωiI
e
i = ωjI

e
j ∀i, j ∈ Vpow,

where the weight ωi, i = 1, · · · , N are given parameters.

In fact, ω−1i can be chosen as the corresponding DGUi rated current. Hence,
a relatively small value of ωi corresponds to a relatively large generation capacity
of DGUi.

Generally, achieving Objective 1 does not permit to attend an equilibrium
voltage V e = V ref at the same time. Hence, as in [8] an average voltage reg-
ulation is considered, where the aim of the controller is to have the weighted
average value of V e equal to the weighted average value of the desired reference
voltages V ref . Assuming that there exists a reference voltage V refi at the PCC,
for all DGUi, the second control objective can be stated as

Objective 2. (Average Voltage Regulation)

lim
t→∞

1TNW
−1V (t) = 1TNW

−1V e = 1TNW
−1V ref ,

where W = diag(ω1, · · · , ωN ), ωi > 0, for all DGUi.

The choice of the weights for voltages as ω−1i is motivated by the fact that
the DGUi with the highest capacity should impose the voltage of the MG [8].

Now, we are able to state the control problem as :
Control Problem: For a given reference voltage V ref and an unknown load
current IL, design a distributed-based control scheme s.t. the state of system (2)
in closed-loop converges globally and asymptotically to a set of equilibrium points
Se whose elements satisfy Objectives 1-2.
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5 Distributed Controller Design

In this section, a solution to the control problem defined in Section 4 is provided.
First, we assume the following:

Assumption 1. (communication network) A communication network mod-
eled as a connected and undirected graph Gcom = (Vcom,Lcom) where Vpow =
{1, ..., N} represent the DGUs and Lcom ∈ RN×N is a symmetric positive semidef-
inite Laplacian matrix, allows to exchange voltage Vi and current Ii measured
at each DGUi, i = 1, ..., N .

Assumption 2. (Nominal Model) All the DGUs have the same nominal val-
ues of parameters, i.e., Li = L∗, Ci = C∗, Ri = R∗ and RLi = R∗L ∀i = 1, · · · , N
with L∗, C∗, R∗, R∗L ∈ R>0 represent the nominal values. Thus, L = L∗IN ,
C = C∗IN , R = R∗IN and RL = R∗LIN .

Our aim is to determine a controller including N integral actions in order
to achieve Objectives 1-2. Consider system (2), let us introduce an augmented
state X = (I, V, φ, γ) whose dynamics is given by the following equations:

Σ


Lİ = −RI − V + u,

CV̇ = I − (R−1L + Lpow)V − IL,
τφφ̇ = WTLcomWI,

τγ γ̇ = −WTLcomWγ + (V − V ref ),

(3a)

(3b)

(3c)

(3d)

where τφ, τγ ∈ R>0 and where Lcom is defined in Assumption 1.

Definition 1. (Set of Equilibrium Points) For a given reference voltage
V ref and an unknown load current IL, the set of all the equilibrium points is
defined by Se(IL, V

ref ) = {X e = (Ie, V e, φe, γe) ∈ R4N and ue ∈ RN s.t.:
0 = −RIe − V e + ue, 0 = Ie − (R−1L + Lpow)V e − IL, 0 = WTLcomWIe, and
0 = −WTLcomWγe + (V e − V ref ).}

For a given reference voltage V ref and an unknown load current IL, one can
easily prove that the set Se(IL, V

ref ) is not empty and that Objectives 1-2 are
always achieved in this set. The next part concerns the design of a state feedback
controller of the form

u = −K(I, V, φ, γ), (4)

with K ∈ RN×4N and s.t. the state X = (I, V, φ, γ) converges asymptotically to
the set Se.

5.1 Local controllers design

Since the controller u should be distributed, the local controllers ui i = 1, ..., N
should depend only on local variables xi = (Ii, Vi, φi, γi). Hence, the gain matrix
K (see (4)) should be restricted to the form:

K = (KI ,KV ,Kφ,Kγ), (5)
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where KI , KV , Kφ, Kγ ∈ RN×N are diagonal matrices. The main difficulty to
find a gain matrix of this form for system (3) is the existence of physical (Lpow)
and communication (Lcom) coupling terms. Hence, to simplify the design let us
introduce the following change of coordinates:

(Ĩ , Ṽ , φ̃, γ̃) = (I4 ⊗ UT )(I, V, φ, γ), (6)

where U ∈ RN×N is a unitary matrix s.t.:

L̃com = UTWTLcomWU = diag(0, λ2, . . . , λN )

where λi < λj ∀ i < j. The matrix U exists because WTLcomW is a symmetric
matrix and λ1 = 0 since the graph Gcom is connected. In this new basis, system
(3) can be rewritten as follows:

Σ̃



L ˙̃I = −RĨ − Ṽ + ũ,

C ˙̃V = Ĩ − (R−1L + L̃pow)Ṽ − ĨL,

τφ
˙̃
φ =


0 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λN


︸ ︷︷ ︸

L̃com

Ĩ ,

τγ ˙̃γ = −L̃comγ̃ + (Ṽ − Ṽ ref ).

(7a)

(7b)

(7c)

(7d)

where L̃pow = UTLpowU and (ũ, ĨL, Ṽ
ref ) = (I3 ⊗ UT )(u, IL, V

ref ). Note that
the matrices L, C, R and RL remain unchanged by Assumption 2. Consider a
controller ũ of the form:

ũ = −K̃(Ĩ , Ṽ , φ̃, γ̃), (8)

where K̃ = (K⊗ IN ) and K =
[
kI kV kφ kγ

]
∈ R1×4. Let us remark that system

Σ̃ with the control law (8) is composed of N interconnected subsystems which
can be written using a permutation matrix as follows, for i = 1, · · · , N :

Σ̃i : ˙̃xi = Aclix̃i + di −Bp
∑

j∈Npowi

li,jCp(x̃i − x̃j), (9)

where x̃i = (Ĩi, Ṽi, φ̃i, γ̃i), di = −(0, C∗−1ĨLi, 0,
1
τγ
Ṽ refi ), Bp = (0, C∗−1, 0, 0),

Cp =
[
0 1 0 0

]
, li,j for 1 ≤ i, j ≤ N denotes the elements of L̃pow and

Acli =

 A 02×2
λi
τφ

0 0 0

0 1
τγ

0 −λi
τγ

− [L∗t−103×1

]
K,

and where A =

[
−R∗L∗−1 −L∗−1
C∗−1 −(C∗R∗L)−1

]
.

(10)
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In this basis, it can be noticed that the local variables x̃i = (Ĩi, Ṽi, φ̃i, γ̃i) i =
1, ..., N are only coupled by the term Bp

∑
j∈Npowi

li,jCp(x̃i− x̃j) (related to the

matrix L̃pow). The next theorem shows how it is possible to determine the unique
gain matrix K in (10) for all the subsystems by removing the last coupling terms
in the right member of (9) and using some passivity arguments.

Theorem 1. (Main result) If there exists a static state feedback
K =

[
kI kV kφ kγ

]
s.t. the triples (Acli, Bp, Cp) for i = 2, ..., N and (Ăcl1, B̆1, C̆1)

are strictly passive where:

Ăcl1 =

[
A 02×1

0 1
τγ

0

]
−
[
L∗−1

02×1

] [
kI kV kγ

]
,

B̆1 = (0, C∗−1, 0), C̆1 =
[
0 1 0

]
, (11)

and where Acli, Bp, Cp and A are given with subsystems (9), then the state of
the augmented system (3) in closed-loop with

u = −(K ⊗ IN )(I, V, φ, γ)

converges asymptotically to an equilibrium X e ∈ Se(V ref , IL) for which the con-
trol objectives 1-2 are satisfied.

6 Simulation

In this section we aim to validate the proposed controller by simulation. We
consider a MG composed of 4 DGUs with non-identical electrical parameters
and communication links (see Fig. 2). The controller was designed using the

Power line

Communication link

DGU 1DGU 1 DGU 2

DGU 3 DGU 4

Fig. 2. MG with 4 DGUs, power lines, and communication links.

nominal parameter of the MG and then applied on the MG model with the
real parameters. The system is initially at a steady state with load current
IL(0) = [5 10 30 20] A. Then, at the time instant t = t1 the load current is
stepped up with ∆IL = [10 15 20 30] A. As we can see in Fig. 3-4, the weighted
average voltage converges to the weighted average value of the reference voltages
(see Objective 2). Furthermore, the voltages at the PCC converge, without oscil-
lations, to a steady state near to the reference voltage V ref = 380V . Moreover,
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Fig. 4 shows clearly that the weighted currents converge to the same consensus
value achieving Objective 1 and the generated currents converge asymptotically
to the desired steady state, asymptotically.
The results illustrate the robust performance of the proposed controllers under
the change in the load current and the presence of parametric discrepancies from
the nominal values.
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Fig. 3. From the left: weighted average voltage at the PCC and the weighted average
reference voltage value (dashed line); voltage at the PCC of each DGU together with
the reference value (dashed line).
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Fig. 4. From the left: the weighted generated currents of the DGUs; generated currents.
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7 Conclusion

A distributed-based Static-State-feedback control scheme, including integral ac-
tions to achieve both proportional Current Sharing and Average Voltage Reg-
ulation in DC power-networks has been proposed. Distributed integral actions
have been used to achieve the control objectives by exploiting a communica-
tion network. The simulation results clearly show that the control objectives
are achieved with unknown load and even with significant discrepancies between
nominal and real parameters of the DGUs.

References

[1] M. Cucuzzella, S. Trip, C. De Persis, X. Cheng, A. Ferrara, and A. van der
Schaft. A robust consensus algorithm for current sharing and voltage regu-
lation in dc microgrids. IEEE Transactions on Control Systems Technology,
27(4):1583–1595, July 2019.

[2] Adam Hirsch, Yael Parag, and Josep Guerrero. Microgrids: A review of
technologies, key drivers, and outstanding issues. Renewable and Sustainable
Energy Reviews, 90:402 – 411, 2018.

[3] Hassan K Khalil. Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle
River, NJ, 2002.

[4] Jaynendra Kumar, Anshul Agarwal, and Vineeta Agarwal. A review on
overall control of dc microgrids. Journal of Energy Storage, 21:113 – 138,
2019.

[5] X. Lu, J. M. Guerrero, and K. Sun. Distributed secondary control for dc
microgrid applications with enhanced current sharing accuracy. In 2013
IEEE International Symposium on Industrial Electronics, pages 1–6, May
2013.

[6] Mehran Mesbahi and Magnus Egerstedt. Graph Theoretic Methods in Mul-
tiagent Networks. Princeton University Press, 2010.

[7] R. Soloperto, P. Nahata, M. Tucci, and G. Ferrari-Trecate. A passivity-
based approach to voltage stabilization in dc microgrids. In 2018 Annual
American Control Conference (ACC), pages 5374–5379, June 2018.

[8] S. Trip, M. Cucuzzella, X. Cheng, and J. Scherpen. Distributed averaging
control for voltage regulation and current sharing in dc microgrids. IEEE
Control Systems Letters, 3(1):174–179, Jan 2019.

[9] M. Tucci, S. Riverso, and G. Ferrari-Trecate. Line-independent plug-and-
play controllers for voltage stabilization in dc microgrids. IEEE Transac-
tions on Control Systems Technology, 26(3):1115–1123, May 2018.

[10] X. Zhang, M. Dong, and J. Ou. A distributed cooperative control strategy
based on consensus algorithm in dc microgrid. In 2018 13th IEEE Con-
ference on Industrial Electronics and Applications (ICIEA), pages 243–248,
May 2018.


