Skip to main content

Multimodal Topic Detection in Social Networks with Graph Fusion

  • Conference paper
  • First Online:
  • 2614 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12999))

Abstract

Social networks have become a popular way for Internet users to express their thoughts and exchange real-time information. The increasing number of topic-oriented resources in social networks has drawn more and more attention, leading to the development of topic detection. Topic detection of pure texts originates from text mining and document clustering, aiming to automatically identify topics from massive data in an unsupervised manner. With the development of mobile Internet, user-generated content in social networks usually contains multimodal data, such as images, videos, etc. Multimodal topic detection poses a new challenge of fusing and aligning heterogeneous features from different modalities, which has received limited attention in existing research studies. To address this problem, we adopt a Graph Fusion Network (GFN) based encoder and a multilayer perceptron (MLP) decoder to hierarchically fuse information from images and texts. The proposed method regards multimodal features as vertices and models the interactions between modalities with edges layer by layer. Therefore, the fused representations contain rich semantic information and explicit multimodal dynamics, which are beneficial to improve the performance of multimodal topic detection. Experimental results on the real-world multimodal topic detection dataset demonstrate that our model performs favorably against all the baseline methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.yelp.com/dataset.

References

  1. Allan, J.: Introduction to topic detection and tracking. In: Allan, J. (ed.) Topic Detection and Tracking. The Information Retrieval Series, vol. 12, pp. 1–16. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0933-2_1

    Chapter  Google Scholar 

  2. Allan, J., Carbonell, J., Doddington, G., Yamron, J., Yang, Y.: Topic detection and tracking pilot study final report (1998)

    Google Scholar 

  3. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: ACM Knowledge Discovery and Data Mining, pp. 407–416 (2000)

    Google Scholar 

  4. Berrocal, J., Figuerola, C.G., Rodríguez, Z.: Reina at replab2013 topic detection task: Community detection. reina.usal.es (2013)

  5. Bird, S., Loper, E.: NLTK: the natural language toolkit. In: ACL, pp. 214–217 (2004)

    Google Scholar 

  6. Blei, D.M., Ng, A., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  7. Cai, D., He, X., Han, J.: Locally consistent concept factorization for document clustering. IEEE Trans. Knowl. Data Eng. 23(6), 902–913 (2010)

    Article  Google Scholar 

  8. Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on twitter based on temporal and social terms evaluation. In: Proceedings of the Tenth International Workshop on Multimedia Data Mining, pp. 1–10 (2010)

    Google Scholar 

  9. Chen, Y., Liu, L.: Development and research of topic detection and tracking. In: IEEE International Conference on Software Engineering and Service Science, pp. 170–173 (2017)

    Google Scholar 

  10. Connell, M., Feng, A., Kumaran, G., Raghavan, H., Shah, C., Allan, J.: UMass at TDT 2004. In: Topic Detection and Tracking Workshop Report, vol. 19 (2004)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42(1), 177–196 (2001). https://doi.org/10.1023/A:1007617005950

    Article  MATH  Google Scholar 

  13. Huang, F., Zhang, S., Zhang, J., Yu, G.: Multimodal learning for topic sentiment analysis in microblogging. Neurocomputing 253, 144–153 (2017)

    Article  Google Scholar 

  14. Kuo, Z., Juan-zi, L., Gang, W., Ke-hong, W.: A new event detection model based on term reweighting (2008)

    Google Scholar 

  15. Lau, J.H., Collier, N., Baldwin, T.: On-line trend analysis with topic models:# Twitter trends detection topic model online. Proc. COLING 2012, 1519–1534 (2012)

    Google Scholar 

  16. Li, W., Joo, J., Qi, H., Zhu, S.C.: Joint image-text news topic detection and tracking by multimodal topic and-or graph. IEEE Trans. Multimedia 19(2), 367–381 (2016)

    Article  Google Scholar 

  17. Liu, W., Zhang, M.: Semi-supervised sentiment classification method based on Weibo social relationship. In: Ni, W., Wang, X., Song, W., Li, Y. (eds.) WISA 2019. LNCS, vol. 11817, pp. 480–491. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30952-7_47

    Chapter  Google Scholar 

  18. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  19. Mai, S., Hu, H., Xing, S.: Modality to modality translation: an adversarial representation learning and graph fusion network for multimodal fusion. In: AAAI Conference on Artificial Intelligence, pp. 164–172 (2020)

    Google Scholar 

  20. Pang, J., Tao, F., Huang, Q., Tian, Q., Yin, B.: Two birds with one stone: a coupled Poisson deconvolution for detecting and describing topics from multimodal web data. IEEE Trans. Neural Netw. Learn. Syst. 30(8), 2397–2409 (2018)

    Article  Google Scholar 

  21. Pennington, J., Socher, R., Manning, C.: GloVe: gobal vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  22. Petkos, G., Papadopoulos, S., Aiello, L., Skraba, R., Kompatsiaris, Y.: A soft frequent pattern mining approach for textual topic detection. In: International Conference on Web Intelligence, Mining and Semantics, pp. 1–10 (2014)

    Google Scholar 

  23. Sayyadi, H., Raschid, L.: A graph analytical approach for topic detection. ACM Trans. Internet Technol. 13(2), 1–23 (2013)

    Article  Google Scholar 

  24. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May, 2015, Conference Track Proceedings (2015)

    Google Scholar 

  26. Trieschnigg, D., Kraaij, W.: TNO hierarchical topic detection report at TDT 2004. In: Topic Detection and Tracking Workshop Report (2004)

    Google Scholar 

  27. Truong, Q.T., Lauw, H.W.: VistaNet: visual aspect attention network for multimodal sentiment analysis. In: AAAI, vol. 33, pp. 305–312 (2019)

    Google Scholar 

  28. Xiong, Y., Zhang, Y.F., Feng, S., Wang, D.L.: Event detection and tracking in microblog stream based on multimodal feature deep fusion. Control and Decision (2019)

    Google Scholar 

  29. Yang, Y., Carbonell, J.G., Brown, R.D., Pierce, T., Archibald, B.T., Liu, X.: Learning approaches for detecting and tracking news events. IEEE Int. Syst. Appl. 14(4), 32–43 (1999)

    Article  Google Scholar 

  30. Yu, H., Zhang, Y., Ting, L., Sheng, L.: Topic detection and tracking review. J. Chin. Inf. Process. 6(21), 77–79 (2007)

    Google Scholar 

  31. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. In: EMNLP, pp. 1103–1114 (2017)

    Google Scholar 

  32. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S. (eds.) ACM Conference on Management of Data, pp. 103–114 (1996)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the NSFC-Xinjiang Joint Fund (No. U1903128), NSFC General Technology Joint Fund for Basic Research (No. U1836109, No. U1936206), Natural Science Foundation of Tianjin, China (No. 18ZXZNGX00110, No. 18ZXZNGX00200), and the Fundamental Research Funds for the Central Universities, Nankai University (No. 63211128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangrui Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Song, K., Cai, X., Tuergong, Y., Yuan, L., Zhang, Y. (2021). Multimodal Topic Detection in Social Networks with Graph Fusion. In: Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds) Web Information Systems and Applications. WISA 2021. Lecture Notes in Computer Science(), vol 12999. Springer, Cham. https://doi.org/10.1007/978-3-030-87571-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87571-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87570-1

  • Online ISBN: 978-3-030-87571-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics