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Abstract. With the success of deep learning-based methods applied
in medical image analysis, convolutional neural networks (CNNs) have
been investigated for classifying liver disease from ultrasound (US) data.
However, the scarcity of available large-scale labeled US data has hin-
dered the success of CNNs for classifying liver disease from US data.
In this work, we propose a novel generative adversarial network (GAN)
architecture for realistic diseased and healthy liver US image synthesis.
We adopt the concept of stacking to synthesize realistic liver US data.
Quantitative and qualitative evaluation is performed on 550 in-vivo B-
mode liver US images collected from 55 subjects. We also show that the
synthesized images, together with real in vivo data, can be used to sig-
nificantly improve the performance of traditional CNN architectures for
Nonalcoholic fatty liver disease (NAFLD) classification.

Keywords: Nonalcoholic Fatty Liver Disease · Ultrasound · Classifica-
tion · Stacked Generative Adversarial Network · Deep Learning

1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is being recognized as one of the most
common liver diseases worldwide, affecting up to 30% of the adult population
in the Western countries [25]. It is defined as a condition with increased fat
deposition in the hepatic cells due to obesity and diabetes in the absence of
alcohol consumption [4]. Patients with NAFLD are at an increased risk for the
development of cirrhosis and hepatocellular carcinoma (HCC) which is one of
the fastest-growing causes of death in the United States and poses a significant
economic burden on healthcare [19]. Therefore, early diagnosis of NAFLD is
important for improved management and prevention of HCC. Liver biopsy is
considered the gold standard for diagnosing NAFLD [8]. However, biopsy is an
invasive and expensive procedure associated with serious complications making
it impractical as a diagnostic tool [24]. Incorrect staging in 20% of the patients
has also been reported due to sampling error and/or inter-observer variability
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[24]. Diagnostic imaging, based on Ultrasound (US), Magnetic resonance imaging
(MRI), and Computed Tomography (CT), has been utilized as a safe alternative.
Due to being cost-effective, safe, and able to provide real-time bedside imaging
US has been preferred over MRI and CT [14]. Nonetheless, studies have shown
that the specificity and sensitivity of US to detect the presence of steatosis is very
poor [12]. Furthermore, the appearance of the tissue can be very easily affected
by machine acquisition settings and the experience of the clinicians [1,22].

To overcome the drawbacks of US imaging and improve clinical management
of liver disease, Computer-Aided Diagnostic (CAD) systems have been devel-
oped. With the success of deep learning methods in the analysis of medical
images, recent focus has been on the incorporation of convolutional neural net-
works (CNNs) into CAD systems to improve the sensitivity and specificity of US
in diagnosing liver disease [5,6,7,15,16,21]. Although successful results were re-
ported, one of the biggest obstacles hindering the improved adaptation of deep
learning-based CAD systems in clinical practice is the unavailability of large-
scale annotated datasets. The collection of large-scale annotated medical data
is a very expensive and long process. Albeit there are many publicly available
datasets and world challenges, the data available is still limited and the focus
has been on certain clinical applications based on MRI, CT, and X-ray imaging.
One of the most commonly used practices to overcome the scarce data problem
is data augmentation based on image geometric transformation techniques such
as rotation, translation, and intensity transformations [2,7,17]. However, these
transformations result in images with similar feature distributions and do not
increase the diversity of the dataset required to improve the performance of any
CNN model. A new type of data augmentation is image synthesis using gen-
erative adversarial networks (GANs). GAN-based medical image synthesis has
become popular for improving the dataset size and has been extensively inves-
tigated for improving classification and segmentation tasks [11,27]. However, to
the best of our knowledge GAN-based image synthesis in the context of liver
disease classification from US data has not been investigated previously.

In this work, a novel GAN-based deep learning method is proposed to synthe-
size B-mode liver US data. Our contributions include: 1- We propose a stacked
GAN architecture for realistic liver US image synthesis. 2- Using ablation stud-
ies we show how the performance of state-of-the-art GAN architectures can be
improved using the proposed stacked GAN architecture. Qualitative and quanti-
tative evaluations are performed on 550 B-mode in-vivo liver US images collected
from 55 subjects. Extensive experiments demonstrate our method improves tra-
ditional single-stage GANs to generate B-mode liver US data. We also show that
by using a larger balanced NAFLD dataset, including real and synthesized data,
the performance of the liver disease classification task can be improved by 4.34%.

2 Materials and Methods

The architecture of our proposed network is shown in Figure 1. Specifically we
design a stacked GAN model (StackGAN)to generate high-resolution liver US
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images in two stages. A common GAN layout is utilized in Stage-I to synthesize
a mid-resolution image. Stage-II GAN, the main contribution of this work, aims
to output an image with improved tissue details by integrating features from
the mid-resolution image during the generative process. The two stage approach
overcomes the training instability of single stage GANs and results in improved
and realistic representation of the synthesized liver US data. The overall network
produces high-resolution images using random noise as input, not relying on any
prior information from the original data.

Fig. 1. Overview of the proposed GAN-based network architecture. Stage-I GAN pro-
duces mid-resolution images and Stage-II GAN outputs high-resolution images with re-
alistic tissue details. Dashed vertical lines represent skip-connection. Bottom: encoder-
decoder architecture to integrate features.

2.1 Stage-I GAN

GAN [9], as an unsupervised generative model to learn the data distribution,
is made of two distinct models: a generator G to generate samples as realistic
as possible and a discriminator D to discriminate the belonging of the given
sample. G aims to transform a latent space vector z ∼ p(z) sampled from a
prior distribution into a real-like image, while D learns to distinguish between
the real image x and the fake image G(z). GAN is trained by minimizing the
following adversarial loss in an alternating manner [28], which falls in a state of
the confrontational game:

LD = −Ex∼pdata(x)[logD(x)] − Ez∼pz(z)[log(1 −D(G(Z)))],

LG = −Ez∼pz(z)[logD(G(Z))]
(1)

In this work, for Stage-I GAN we adopt several popular GAN-based archi-
tectures to synthesize NAFLD US images: DCGAN [20], DCGAN with spectral
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normalization (SN) [28], and DCGAN with SN [18] and self-attention module
(SA) [28].
DCGAN: DCGAN[20] introduces CNN into the generative model to acquire
the powerful feature extraction capability. Compared to the traditional GAN de-
sign, both the discriminator and the generator in DCGAN discard pooling layers
and choose to use convolutional and convolutional-transpose layers respectively.
The LeakyReLU activation is utilized in all layers of the discriminator to prevent
gradient sparseness and the output of the last convolutional layer is processed by
the Sigmoid function neither fully connected layer to give a discriminative result.
In the generator, the output layer uses the activation function of Tanh and the
remaining layers use ReLU activations. Batch normalization in networks (not
include the output layer of the generator and the input layer of the discrimina-
tor) helps prevent training issues caused by poor initialization. For uncoditional
image synthesis, DCGAN has been widely adopted in the medical imaging com-
munity [27] and has therefore been chosen as our baseline GAN architecture.
However, in the following sections we also introduce further improvements to
DCGAN.
Spectral Normalization (SN) Module: The main idea of SN is to restrict
the output of each layer through the Lipschitz constant without complicated pa-
rameter adjustments [18]. Doing so can constrain the update of the discriminator
triggered by generator update to a lesser extent. The normalization is applied
in the generator and discriminator simultaneously. Most recently SN was incor-
porated into GAN for improving low dose chest X-ray image resolution [26] and
multi-modal neuroimage synthesis [13].
Self-Attention (SA) Module: SA module calculates the attention value be-
tween local pixel regions and helps to model global correlation in a wider range.
The generator with the SA module learns specific structure and geometric fea-
tures [28]. In addition, the discriminator can now perform complex geometric
constraints more accurately on the global structure. This module was recently
incorporated into a GAN architecture for synthesizing bone US data [3].

2.2 Stage-II GAN

Directly generating high-resolution images usually meets problems of detail and
poor diversity. Instead, we turn to generate a mid-resolution image with high
quality in Stage-I and obtain its feature maps in different depth, which are
fused into corresponding layers of the generator for information supplement.
The generated mid-resolution images have relatively diverse feature distributions
but lack vivid tissue representations. The latter generator is supported by rich
structure information from synthetic images with the size of 256 × 256 and fills
feature details at the same time.

The generated image in Stage-I GAN is fed into the Stage-II GAN genera-
tor. The Stage-II GAN generator is constructed using an encoder and decoder
network architecture (Fig.1). The encoder receives Stage-I images and outputs
feature maps in various sizes. The basic block in the encoder is comprised of
a convolutional layer and a maxpooling layer. The downsampling enlarges the
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receptive field area and concentrates on feature extraction. Captured features
are integrated into the generator by skip-connection. We also concatenate the
random noise vector z in the encoder output and input this combined feature
vector to the decoder. Conditioned on the low-resolution result, obtained Stage-
I, and the noise vector the discriminator and generator of Stage-II GAN are
trained by maximizing LD and minimizing LG showed in Equation 1. The pro-
posed method avoids the prior knowledge from real data as input and guarantees
the diversity of generated images. Our discriminator, denoted as D, during this
stage uses the same architecture of discriminator in DCGAN to perform differ-
entiation of real or synthetic. Using information from generated mid-resolution
images rather than real images prevents the model from memorizing patterns
from real images. Furthermore, Stage-II GAN corrects imaging artifacts in the
low-resolution image, obtained in Stage-I, synthesizing high-resolution realistic
liver US data.

3 Experiments and Results

3.1 Dataset

Experiments are performed on the dataset provided by [6]. The NAFLD dataset
includes 550 B-mode US scans and biopsy results from 55 subjects. 10 US images
were collected for each subject. Using biopsy, 38 subjects were diagnosed as
NAFLD patients and the rest 17 were viewed as normal/healthy individuals. The
data was collected using the GE Vivid E9 Ultrasound System (GE Healthcare
INC, Horten, Norway) equipped with a sector US transducer operating at 2.5
MHz[6]. All images were cropped to remove irrelevant regions (mostly related
to text involving image acquisition settings) and then resized to a size of 256 ×
256. During the cropping, the original image resolution of 0.373 mm was kept
constant.
Training and test data: To validate the performance of our proposed method,
we randomly split 70 normal and 70 diseased images as a testing set, remain-
ing images (100 healthy and 310 diseased) are grouped as a training set to train
GAN-based networks. The classification network was trained using real and syn-
thesized data totaling to 1000 healthy and diseased US images. The split obeys
the rule that the same patient scans are not used for both training and test-
ing. The random split operation was repeated five time and average results are
reported.

We conduct experiments using the PyTorch framework with an Intel Core
CPU at 3.70 GHz and an Nvidia GeForce GTX 1080Ti GPU. GAN-based net-
works are trained using the cross-entropy loss and ADAM optimization method
with batch size of 16 and a learning rate of 0.0002. Exponential decay rate
for the first and second moment estimates are set to 0.5 and 0.999. The per-
formance of our proposed generative method is compared with those popular
GAN-based architectures mentioned in section 2.1 to generate liver US images
directly. Examples for each class are generated individually, not incorporating
class conditions.
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3.2 GAN-based Network Evaluation

Fig. 2. Qualitative results of the images generated by DCGAN in combination with the
different modules, along with the proposed module. SA - Self-attention module and SN -
Spectral normalization module. Blue arrows point to qualitative improvements achieved
over prior state of the art. In all the presented results ours denotes the integration of
Stage-II GAN module.

Qualitative Results: Qualitative results for the investigated models are given
in Fig. 2. The first row in the figure demonstrates examples of real images fol-
lowed by the synthesized images generated by different methods, for both classes
diseased and healthy. The different state of the art methods that are used to
synthesize the images and compare them are, DCGAN[20], DCGAN combined
with the proposed (Stage-II GAN) module, DCGAN[20] with SN[18] module,
DCGAN[20] with SN[18] module combined with the proposed (Stage-II GAN)
module, DCGAN[20] with SN[18] and SA[28] modules, and a combination of
DCGAN[20] with all modules (SN[18], SA[28] and proposed Stage-II GAN)). In-
vestigating the results in Figure 2 it can be seen that when the proposed module
(Stage-II GAN) is used in combination with state of art DCGAN modules, qual-
itative improvements can be obtained. Blue arrows in Figure 2 point to anatomy
missed using the prior GANs investigated. However, we can see that by incor-
porating our proposed module liver tissue characterization in the synthesized
images improves.
Quantitative Results: The Inception Score (IS) and Frechet Inception Dis-
tance (FID) score are used to quantitatively evaluate the generated image qual-
ity and diversity. The Inception Score (IS) helps to estimate the quality of the
generated images based on the classification performance of Inception V3 classi-
fier on the synthesized images[10]. Higher IS value means the synthesized images
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are diverse and similar to the real data [11,27]. Although IS is a very good metric
to assess the quality of the synthesized images, it does not compare the synthetic
images with the original images. Frechet Inception Distance (FID) is based on the
statistics of the generated images compared with that of the original images[10].
Similar to IS, FID is also calculated using the Inception V3 model, the acti-
vations of the last pooling layer are summarized as a multi-variate Gaussian,
the distance between the two Gaussians are calculated as FID[10]. A low FID
shows that the images synthesized by this GAN architecture have high diversity
in them and are at par with the real images[11,27].

The IS and FID metrics are calculated on 400 synthesized images for each
category. From Table 1, it is noted that our Stage-II GAN module significantly
improved the IS and FID results for all the investigated prior GAN modules
(paired t-test p < 0.05). The highest IS score is obtained when DCGAN is
combined with the SN and our proposed Stage-II GAN module. The lowest FID
score is achieved when DCGAN is combined with the proposed model, that is
without the SA and SN modules.

Table 1. IS and FID of the proposed DCGAN, DCGAN+SN, DCGAN+SN+SA to
synthesize liver US images directly and incorporating our Stage-II GAN. Bold text
shows the best results obtained. SA- Self attention module, SN- Spectral Normalization
module. In all the presented results ours denotes the integration of Stage-II GAN
module.

IS↑
abnormal/normal

FID ↓
abnormal/normal

DCGAN[20] 1.32±0.02 / 1.28±0.01 113.87/161.76

DCGAN[20]+ours 1.55±0.08 / 1.48±0.05 100.05/99.53

DCGAN[20]+SN[18] 1.09±0.01 / 1.34±0.06 170.68/247.76

DCGAN[20]+SN[18]+ours 1.67±0.08 / 1.50±0.05 156.55/110.17

DCGAN[20]+SN[18]+SA[28] 1.42±0.03 / 1.38±0.03 160.19/259.19

DCGAN[20]+SN[18]+SA[28]+ours 1.51±0.07 / 1.51±0.06 108.39/103.07

3.3 Classification Evaluation

To evaluate the quality of the synthesized images, EfficientNet [23] is employed to
perform binary classification on the original dataset and expanded class-balanced
dataset. The training dataset is expanded from 410 images to 1000 images using
590 generated images (Diseased class: 310 real + 190 synthetic; Healthy class:
100 real + 400 synthetic). As explained previously, test data was 140 real US
images (70 health 70 diseased) which were not part of the image synthesis pro-
cess. The classification performance is measured by accuracy, precision, recall
and F1score. The quantitative results are shown in Table 2. From the table, it
can be noted that the classification algorithm obtains the best accuracy when
the synthesized images are obtained using DCGAN in combination with the pro-
posed Stage-II GAN module (paired t-test p < 0.05). Similar to GAN evaluation
results, from Table 2 we can observe that our proposed Stage-II GAN module
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significantly improves classification performance metrics for all the investigated
prior GAN modules (paired t-test p < 0.05).

Table 2. Quantitative classification results for all the investigated methods. Bold text
shows the best results obtained. In all the presented results ours denotes the integration
of Stage-II GAN module.

Accuracy Precision Recall F1score

The original dataset 82.14% 82.47% 82.14% 82.10%

DCGAN[20] 84.29% 84.31% 84.29% 84.29%

DCGAN[20]+ ours 85.71% 87.68% 85.71% 85.53%

DCGAN[20] + SN[18] 74.29% 76.00% 74.29% 73.85%

DCGAN[20] + SN[18] + ours 78.57% 79.17% 78.57% 78.46%

DCGAN[20] + SN[18] + SA[18] 80.71% 80.77% 80.71% 80.71%

DCGAN[20] + SN[18] + SA[18] + ours 82.86% 82.88% 82.86% 82.85%

4 Conclusion

In this work, a novel GAN architecture for realistic B-mode liver US image
generation was proposed. Qualitative and quantitative results show significant
improvements in image synthesis can be achieved using the proposed two-stage
architecture. We also show that the classification performance of well-known
CNN architectures can be significantly improved using the synthesized images.
Our study is the first attempt to synthesize diseased and healthy liver US images
based on a novel GAN module that can be incorporated into popular GAN-based
models for improving their performance. One major drawback of our work is the
limited dataset size. We only had access to 550 B-mode US data. Increasing the
dataset size could also result in the performance improvements of the classifi-
cation method investigated in this work. Furthermore, we have only evaluated
the performance of DCGAN as Stage-I GAN architecture. Investigation of var-
ious other GAN architectures, used for medical image synthesis [11,27], should
also be performed to understand the full potential of our Stage-II GAN model.
Finally, a comparison study against traditional augmentation methods should
also be performed. Future work will include the collection of large-scale liver US
data and improvements of the shortcomings of our work.
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