Skip to main content

TransBridge: A Lightweight Transformer for Left Ventricle Segmentation in Echocardiography

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12967))

Abstract

Echocardiography is an essential diagnostic method to assess cardiac functions. However, manually labelling the left ventricle region on echocardiography images is time-consuming and subject to observer bias. Therefore, it is vital to develop a high-performance and efficient automatic assessment tool. Inspired by the success of the transformer structure in vision tasks, we develop a lightweight model named ‘TransBridge’ for segmentation tasks. This hybrid framework combines a convolutional neural network (CNN) encoder-decoder structure and a transformer structure. The transformer layers bridge the CNN encoder and decoder to fuse the multi-level features extracted by the CNN encoder, to build global and inter-level dependencies. A new patch embedding layer has been implemented using the dense patch division method and shuffled group convolution to reduce the excessive parameter number in the embedding layer and the size of the token sequence. The model is evaluated on the EchoNet-Dynamic dataset for the left ventricle segmentation task. The experimental results show that the total number of parameters is reduced by 78.7% compared to CoTr [22] and the Dice coefficient reaches 91.4%, proving the structure’s effectiveness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, J., et al.: TransUNet: Transformers make strong encoders for medical image segmentation, February 2021

    Google Scholar 

  2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017)

    Google Scholar 

  3. Chen, X., Williams, B.M., Vallabhaneni, S.R., Czanner, G., Williams, R., Zheng, Y.: Learning active contour models for medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11632–11640 (2019)

    Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale, October 2020

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  7. Huang, X., et al.: Contour tracking in echocardiographic sequences via sparse representation and dictionary learning. Med. Image Anal. 18(2), 253–271 (2014)

    Article  Google Scholar 

  8. Lang, R.M., et al.: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the european association of cardiovascular imaging. Eur. Heart J. Cardiovascular Imag. 16(3), 233–271 (2015). https://doi.org/10.1093/ehjci/jev014

  9. Leclerc, S., Grenier, T., Espinosa, F., Bernard, O.: A fully automatic and multi-structural segmentation of the left ventricle and the myocardium on highly heterogeneous 2D echocardiographic data. In: 2017 IEEE International Ultrasonics Symposium (IUS), pp. 1–4 (2017). https://doi.org/10.1109/ULTSYM.2017.8092797

  10. Leclerc, S., et al.: Deep learning applied to multi-structure segmentation in 2D echocardiography: a preliminary investigation of the required database size. In: 2018 IEEE International Ultrasonics Symposium (IUS), pp. 1–4 (2018). https://doi.org/10.1109/ULTSYM.2018.8580136

  11. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imag. 38(9), 2198–2210 (2019). https://doi.org/10.1109/TMI.2019.2900516

    Article  Google Scholar 

  12. Li, M., et al.: Unified model for interpreting multi-view echocardiographic sequences without temporal information. Appl. Soft Comput. 88, 106049 (2020)

    Article  Google Scholar 

  13. Mehta, S., Ghazvininejad, M., Iyer, S., Zettlemoyer, L., Hajishirzi, H.: Delight: Deep and light-weight transformer, August 2020

    Google Scholar 

  14. Meng, Y., et al.: Regression of instance boundary by aggregated CNN and GCN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 190–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_12

    Chapter  Google Scholar 

  15. Meng, Y., et al.: CNN-GCN aggregation enabled boundary regression for biomedical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 352–362. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_35

    Chapter  Google Scholar 

  16. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imag. 37(2), 384–395 (2018). https://doi.org/10.1109/TMI.2017.2743464

    Article  Google Scholar 

  17. Ouyang, D., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020). https://doi.org/10.1038/s41586-020-2145-8

  18. Reid, M., Marrese-Taylor, E., Matsuo, Y.: Subformer: Exploring weight sharing for parameter efficiency in generative transformers (2021)

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R., Uszkoreit, J., Beyer, L.: How to train your vit? data, augmentation, and regularization in vision transformers (2021)

    Google Scholar 

  21. Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted Res-UNet for high-quality retina vessel segmentation (2018). https://doi.org/10.1109/ITME.2018.00080

  22. Xie, Y., Zhang, J., Shen, C., Xia, Y.: CoTr: Efficiently bridging CNN and transformer for 3D medical image segmentation, March 2021

    Google Scholar 

  23. Yang, Q.L.Z.Y.B.: SA-Net: Shuffle attention for deep convolutional neural networks, January 2021

    Google Scholar 

  24. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6881–6890, June 2021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, K. et al. (2021). TransBridge: A Lightweight Transformer for Left Ventricle Segmentation in Echocardiography. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, SL., Hu, Y. (eds) Simplifying Medical Ultrasound. ASMUS 2021. Lecture Notes in Computer Science(), vol 12967. Springer, Cham. https://doi.org/10.1007/978-3-030-87583-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87583-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87582-4

  • Online ISBN: 978-3-030-87583-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics