Skip to main content

Adversarial Affine Registration for Real-Time Intraoperative Registration of 3-D US-US for Brain Shift Correction

  • Conference paper
  • First Online:
Simplifying Medical Ultrasound (ASMUS 2021)

Abstract

One of the most frequent tumors in the central nervous system is glioma. The high-grade gliomas grow relatively fast and eventually lead to death. The tumor resection improves the survival rate. However, an accurate image-guidance is necessary during the surgery. The problem may be addressed by image registration. There are three main challenges: (i) the registration must be performed in real-time, (ii) the tumor resection results in missing data that strongly influence the similarity measure, and (iii) the quality of ultrasonography images. In this work, we propose a solution based on generative adversarial networks. The generator network calculates the affine transformation while the discriminator network learns the similarity measure. The ground-truth for the discriminator is defined by calculating the best possible affine transformation between the anatomical landmarks. This approach allows real-time registration during the inference and does not require defining the similarity measure that takes into account the missing data. The work is evaluated using the RESECT database. The dataset consists of 17 US-US pairs acquired before, during, and after the surgery. The target registration error is the main evaluation criteria. We show that the proposed method achieves results comparable to the state-of-the-art while registering the images in real-time. The proposed method may be useful for the real-time intraoperative registration addressing the brain shift correction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland, E.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)

    Article  Google Scholar 

  2. Ostrom, Q., et al.: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 21, 1–100 (2019)

    Article  Google Scholar 

  3. Schomas, D., et al.: Intracranial low-grade gliomas in adults: 30-Year experience with long-term follow-up at Mayo Clinic. Neuro Oncol. 11(4), 437–445 (2009)

    Article  Google Scholar 

  4. Jakola, A., et al.: Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA J. Am. Med. Assoc. 308(18), 1881–1888 (2012)

    Article  Google Scholar 

  5. Banerjee, J., Klink, C., Peters, E., Niessen, W., Moelker, A., van Walsum, T.: Fast and robust 3D ultrasound registration - block and game theoretic matching. Med. Image Anal. 20(1), 173–183 (2015)

    Article  Google Scholar 

  6. Che, C., Mathai, T., Galeotti, J.: Ultrasound registration: a review. Methods 115, 128–143 (2017)

    Article  Google Scholar 

  7. Wein, W., Ladikos, A., Fuerst, B., Shah, A., Sharma, K., Navab, N.: Global registration of ultrasound to MRI using the LC\(^{2}\) metric for enabling neurosurgical guidance. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 34–41. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_5

    Chapter  Google Scholar 

  8. Xiao, Y., Fortin, M., Unsgärd, G., Rivaz, H., Reinertsen, I.: REtroSpective Evaluation of Cerebral Tumors (RESECT): a clinical database of pre-operative MRI and intra-operative ultrasound in low-grade glioma surgeries. Med. Phys. 44(7), 3875–3882 (2017)

    Article  Google Scholar 

  9. Drobny, D., Ranzini, M., Ourselin, S., Vercauteren, T., Modat, M.: Landmark-based evaluation of a block-matching registration framework on the RESECT pre- and intra-operative brain image data set. In: Zhou, L., et al. (eds.) LABELS/HAL-MICCAI/CuRIOUS 2019. LNCS, vol. 11851, pp. 136–144. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33642-4_15

    Chapter  Google Scholar 

  10. Luo, J., et al.: A feature-driven active framework for ultrasound-based brain shift compensation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 30–38. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_4

    Chapter  Google Scholar 

  11. Machado, I., et al.: Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching. Int. J. Comput. Assist. Radiol. Surg. 13(10), 1525–1538 (2018). https://doi.org/10.1007/s11548-018-1786-7

    Article  Google Scholar 

  12. Canalini, L., Klein, J., Miller, D., Kikinis, R.: Registration of ultrasound volumes based on euclidean distance transform. In: Zhou, L., Reinertsen, I. (eds.) LABELS/HAL-MICCAI/CuRIOUS 2019. LNCS, vol. 11851, pp. 127–135. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33642-4_14

    Chapter  Google Scholar 

  13. Fan, J., Cao, X., Wang, Q., Yap, P., Shen, D.: Adversarial learning for mono- or multi-modal registration. Med. Image Anal. 58, 101545 (2019)

    Google Scholar 

  14. Mahapatra, D., Antony, B., Sedai, S., Garnavi, R.: Deformable medical image registration using generative adversarial networks. In: International Symposium on Biomedical Imaging (ISBI), pp. 1449–1453 (2018)

    Google Scholar 

  15. Balakrishnan, G., Zhao, A., Sabuncu, M., Guttag, J., Dalca, A.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  16. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a survey. Mach. Vis. Appl. 31(1), 1–18 (2020)

    Google Scholar 

  17. Xu, Z., et al.: Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)

    Article  Google Scholar 

  18. Dalca, A., Hering, A., Hansen, L., Heinrich, M.: The Learn2Reg Challenge (2020). https://learn2reg.grand-challenge.org

Download references

Acknowledgments

This work was funded by NCN Preludium project no. UMO-2018/29/N/ST6/00143 and NCN Etiuda project no. UMO-2019/32/T/ST6/00065. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Wodzinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wodzinski, M., Skalski, A. (2021). Adversarial Affine Registration for Real-Time Intraoperative Registration of 3-D US-US for Brain Shift Correction. In: Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, SL., Hu, Y. (eds) Simplifying Medical Ultrasound. ASMUS 2021. Lecture Notes in Computer Science(), vol 12967. Springer, Cham. https://doi.org/10.1007/978-3-030-87583-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87583-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87582-4

  • Online ISBN: 978-3-030-87583-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics