Lecture Notes in Computer Science 13001

Founding Editors

Gerhard Goos Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino Purdue University, West Lafayette, IN, USA

Wen Gao Peking University, Beijing, China

Bernhard Steffen D TU Dortmund University, Dortmund, Germany

Gerhard Woeginger D *RWTH Aachen, Aachen, Germany*

Moti Yung

Columbia University, New York, NY, USA

More information about this subseries at http://www.springer.com/series/7412

Ahmed Abdulkadir · Seyed Mostafa Kia · Mohamad Habes · Vinod Kumar · Jane Maryam Rondina · Chantal Tax · Thomas Wolfers (Eds.)

Machine Learning in Clinical Neuroimaging

4th International Workshop, MLCN 2021 Held in Conjunction with MICCAI 2021 Strasbourg, France, September 27, 2021 Proceedings

Editors Ahmed Abdulkadir University of Pennsylvania Philadelphia, PA, USA

Mohamad Habes D The University of Texas Health Science Center at San Antonio San Antonio, TX, USA

Jane Maryam Rondina D University College London London, UK

Thomas Wolfers D University of Oslo Oslo, Norway Seyed Mostafa Kia Donders Institute Nijmegen, The Netherlands

Vinod Kumar Max Planck Institute for Biological Cybernetics Tübingen, Germany

Chantal Tax D University Medical Center Utrecht Utrecht, The Netherlands

Cardiff University Brain Research Imaging Centre (CUBRIC) Cardiff, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-030-87585-5 ISBN 978-3-030-87586-2 (eBook) https://doi.org/10.1007/978-3-030-87586-2

LNCS Sublibrary: SL6 - Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Methodological developments in neuroimaging analysis contribute to the progress in clinical neurosciences. In specific domains of academic image analysis, impressive strides were made thanks to modern machine learning and data analysis methods such as deep artificial neural networks. The initial success in academic applications of complex neural networks started a wave of studies through the neuroimaging research field. Deep learning is now complementing more traditional machine learning as a tool for image and data analysis. It is our view that incorporating interdisciplinary domain knowledge into the machine learning models is critical to answer challenging clinically relevant research questions in the field of clinical neuroscience that eventually will translate to clinical routine. With this workshop, we aimed at creating an intellectual playing field for clinicians and machine learning experts alike to share and discuss knowledge at the interface between machine learning and clinical application.

The 4th International Workshop on Machine Learning in Clinical Neuroimaging (MLCN 2021) was held as a satellite event of the 24th International Conference on Medical Imaging Computing and Computer-Assisted Intervention (MICCAI 2021) to foster a scientific dialog between experts in machine learning and clinical neuroimaging. The call for papers was published on April 30, 2021, and the submission window closed on July 5, 2021. Each submitted manuscript was reviewed by three members of the Program Committee in a double-blindd review process. The accepted manuscripts contained in this proceedings presented a methodologically sound, novel, and thematically fitting contribution to the field of clinical neuroimaging, and were presented and discussed by the authors at the virtual MLCN workshop. The contributions studied in vivo structural and functional magnetic resonance imaging data. Several accepted submissions were concerned with computational anatomy involving a wide range of methods including supervised image segmentation, registration, classification, anomaly detection, and generative modeling. Network analysis and time series were other topical branches of the workshop contributions in which a wide variety of methods were employed and developed including dictionary learning, graph neural networks, and space-time convolutional neural networks. The fields of applications were as diverse as the methods. They included detection and modeling of abnormal cortical folding patterns and simulation of brain atrophy, mapping histology to ex vivo imaging, mapping functional cortical regions, and mapping structural with functional connectivity graphs. The methodological developments pushed the boundaries of clinical neuroscience image analysis with fast algorithms for complex and accurate descriptors of structure, function, or the combination of multiple modalities.

vi Preface

This workshop was made possible by a devoted community of authors, Program Committee, Steering Committee, and workshop participants. We thank all creators and attendees for their valuable contributions.

September 2021

Ahmed Abdulkadir Mohamad Habes Seyed Mostafa Kia Vinod Kumar Jane Maryam Rondina Chantal Tax Thomas Wolfers

Organization

Steering Committee

Christos Davatzikos	University of Pennsylvania, USA
Andre Marquand	Donders Institute, The Netherlands
Jonas Richiardi	Lausanne University Hospital, Switzerland
Emma Robinson	King's College London, UK

Organizing Committee

Ahmed Abdulkadir	University of Pennsylvania, USA
Mohamad Habes	University of Texas Health Science Center at San Antonio,
	USA
Seyed Mostafa Kia	University Medical Center Utrecht, The Netherlands
Vinod Kumar	Max Planck Institute for Biological Cybernetics, Germany
Jane Maryam Rondina	University College London, UK
Chantal Tax	University Medical Center Utrecht, The Netherlands
Thomas Wolfers	NORMENT, Norway

Program Committee

Mohammed Al-Masni	Yonsei University, South Korea
Andre Altman	University College London, UK
Pierre Berthet	University of Oslo, Norway
Özgün Çiçek	University of Freiburg, Germany
Richard Dinga	Donders Institute, The Netherlands
Charlotte Fraza	Donders Institute, The Netherlands
Pouya Ghaemmaghami	Concordia University, Canada
Francesco La Rosa	Ecole Polytechnique Fédérale de Lausanne, Switzerland
Sarah Lee	Amallis Consulting, UK
Hangfan Liu	University of Pennsylvania, USA
Emanuele Olivetti	Fondazione Bruno Kessler, Italy
Pradeep Reddy Raamana	University of Toronto, Canada
Saige Rutherford	University of Michigan, USA
Hugo Schnack	University Medical Center Utrecht, The Netherlands
Haochang Shou	University of Pennsylvania, USA
Haykel Snoussi	University of Texas Health Science Center at San Antonio,
	USA
Sourena Soheili Nezhad	Radboud University Medical Center, The Netherlands
Rashid Tanweer	University of Pennsylvania, USA
Petteri Teikari	University College London, UK

Erdem Varol Matthias Wilms Tianbo Xu Mariam Zabihi Columbia University, USA University of Calgary, Canada University College London, UK Radboud University Medical Center, The Netherlands

Contents

Computational Anatomy

Unfolding the Medial Temporal Lobe Cortex to Characterize	
Neurodegeneration Due to Alzheimer's Disease Pathology Using	
Ex vivo Imaging	3
Sadhana Ravikumar, Laura Wisse, Sydney Lim,	
David Irwin, Ranjit Ittyerah, Long Xie, Sandhitsu R. Das,	
Edward Lee, M. Dylan Tisdall, Karthik Prabhakaran,	
John Detre, Gabor Mizsei, John Q. Trojanowski,	
John Robinson, Theresa Schuck, Murray Grossman,	
Emilio Artacho-Pérula, Maria Mercedes Iñiguez de Onzoño Martin,	
María del Mar Arroyo Jiménez, Monica Muñoz,	
Francisco Javier Molina Romero, Maria del Pilar Marcos Rabal,	
Sandra Cebada Sánchez, José Carlos Delgado González,	
Carlos de la Rosa Prieto, Marta Córcoles Parada, David Wolk,	
Ricardo Insausti, and Paul Yushkevich	
Distinguishing Healthy Ageing from Dementia: A Biomechanical	
Simulation of Brain Atrophy Using Deep Networks	13
Mariana Da Silva, Carole H. Sudre, Kara Garcia, Cher Bass,	
M. Jorge Cardoso, and Emma C. Robinson	
Towards Self-explainable Classifiers and Regressors in Neuroimaging	•••
with Normalizing Flows	23
Matthias Wilms, Pauline Mouches, Jordan J. Bannister,	
Deepthi Rajashekar, Sönke Langner, and Nils D. Forkert	
Patch vs. Global Image-Based Unsupervised Anomaly Detection in MR	
Brain Scans of Early Parkinsonian Patients	34
Verónica Muñoz-Ramírez, Nicolas Pinon, Florence Forbes,	
Carole Lartizen, and Michel Dojat	
MRI Image Registration Considerably Improves CNN-Based Disease	
Classification	44
Malte Klingenberg, Didem Stark, Fabian Eitel, and Kerstin Ritter	
for the Alzheimer's Disease Neuroimaging Initiative	
Dynamic Sub-graph Learning for Patch-Based Cortical Folding	
Classification	53
Zhiwei Deng, Jiong Zhang, Yonggang Shi, and the Health and Aging Brain Study (HABS-HD) Study Team	

Detection of Abnormal Folding Patterns with Unsupervised Deep Generative Models		
		PialNN: A Fast Deep Learning Framework for Cortical Pial Surface
Qiang Ma, Emma C. Robinson, Bernhard Kainz, Daniel Rueckert, and Amir Alansary	13	
Multi-modal Brain Segmentation Using Hyper-Fused Convolutional		
Neural Network Wenting Duan, Lei Zhang, Jordan Colman, Giosue Gulli, and Xujiong Ye	82	
Robust Hydrocephalus Brain Segmentation via Globally and Locally	02	
Yuanfang Qiao, Haoyi Tao, Jiayu Huo, Wenjun Shen, Qian Wang, and Lichi Zhang	92	
Brain Networks and Time Series		
Geometric Deep Learning of the Human Connectome Project Multimodal	102	
Logan Z. J. Williams, Abdulah Fawaz, Matthew F. Glasser, A. David Edwards, and Emma C. Robinson	103	
Deep Stacking Networks for Conditional Nonlinear Granger Causal		
Modeling of fMRI Data Kai-Cheng Chuang, Sreekrishna Ramakrishnapillai, Lydia Bazzano, and Owen T. Carmichael	113	
Dynamic Adaptive Spatio-Temporal Graph Convolution for fMRI		
Modelling Ahmed El-Gazzar, Rajat Mani Thomas, and Guido van Wingen	125	
Structure-Function Mapping via Graph Neural Networks Yang Ji, Samuel Deslauriers-Gauthier, and Rachid Deriche	135	

Improving Phenotype Prediction Using Long-Range Spatio-Temporal	
Dynamics of Functional Connectivity	145
Simon Dahan, Logan Z. J. Williams, Daniel Rueckert,	
and Emma C. Robinson	

55
165
75
5 : 7: