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Abstract. Understanding the topographic heterogeneity of cortical or-
ganisation is an essential step towards precision modelling of neuropsy-
chiatric disorders. While many cortical parcellation schemes have been
proposed, few attempt to model inter-subject variability. For those that
do, most have been proposed for high-resolution research quality data,
without exploration of how well they generalise to clinical quality scans.
In this paper, we benchmark and ensemble four different geometric deep
learning models on the task of learning the Human Connectome Project
(HCP) multimodal cortical parcellation. We employ Monte Carlo dropout
to investigate model uncertainty with a view to propagate these labels
to new datasets. Models achieved an overall Dice overlap ratio of >0.85
± 0.02. Regions with the highest mean and lowest variance included V1
and areas within the parietal lobe, and regions with the lowest mean and
highest variance included areas within the medial frontal lobe, lateral oc-
cipital pole and insula. Qualitatively, our results suggest that more work
is needed before geometric deep learning methods are capable of fully
capturing atypical cortical topographies such as those seen in area 55b.
However, information about topographic variability between participants
was encoded in vertex-wise uncertainty maps, suggesting a potential av-
enue for projection of this multimodal parcellation to new datasets with
limited functional MRI, such as the UK Biobank.

Keywords: Human Connectome Project · Geometric Deep Learning ·
Cortical Parcellation
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Introduction

Cortical parcellation is the process of segmenting the cerebral cortex into func-
tionally specialised regions. Most often, these are defined using sulcal morphol-
ogy [5], and are propagated to individuals from a population-average template
(or set of templates) based on the correspondence of cortical shape [28, 17]. By
contrast, while it is possible to capture subject-specific cortical topography from
functional imaging in a data-driven way [14], it is difficult to perform population-
based comparisons with these approaches as they typically result in parcellations
where the number and topography of the parcels vary significantly across sub-
jects [15]. Notably, even following image registration methods that use both
structural and functional information [26, 25], considerable topographic varia-
tion remains across individuals [10, 19].

Recently, [10] achieved state-of-the-art cortical parcellation through hand an-
notation of a group-average multimodal magnetic resonance imaging (MRI) atlas
from the Human Connectome Project (HCP). Specifically, a sharp group aver-
age of cortical folding, cortical thickness, cortical myelination, task and resting
state functional MRI (fMRI), were generated through novel multi-modal image
registration [25] driven by ’areal features’: specifically T1w/T2w ratio (cortical
myelin) [13] and cortical fMRI; modalities which are known to more closely re-
flect the functional organisation of the brain. This improved alignment allowed
for manual annotation of regional boundaries via identification of sharp im-
age gradients, consistent across modalities. With this group average template,
they trained a multi-layer perceptron (MLP) classifier to recognise the multi-
modal ‘fingerprint’ of each cortical area. This approach allowed [10] to propagate
parcellations from labelled to unlabelled subjects, in a registration-independent
manner, also providing an objective method to validate parcellation in an in-
dependent set of test participants. This classifier detected 96.6% of the cortical
areas in test participants, and could correctly parcellate areas in individuals with
atypical topography [10].

However, even in this state-of-the-art approach, the classifier was still unable
to detect 3.4% of areas across all subjects [10]. Moreover, they were unable
to replicate previously identified parcels in regions such as the orbitofrontal
cortex [23] and the association visual cortex [1]. It is also unknown whether
this classifier generalises to different populations with lower quality data, for
example the UK Biobank [21] and the Developing Human Connectome Project
[20]. Thus, development of new tools that improve upon areal detection and
allow generalisation of this parcellation to new populations with less functional
MRI data is warranted. To this end, we consider convolutional neural networks
(CNNs), which have proven state-of-the-art for many 2D and 3D medical imaging
tasks [16, 3]. More specifically, we benchmark a range of different geometric deep
learning (gDL) frameworks, since these adapt CNNs to irregular domains such
as surfaces, meshes and graphs [2].

The specific contributions of this paper are as follows:

1. We propose a novel framework for propagating the HCP cortical parcellation
[10] to new surfaces using gDL methods. These offer a way to improve over
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vertex-wise classifiers (as used by [10]) by additionally learning the spatial
context surrounding different image features

2. Since gDL remains an active area of research, with several complementary
approaches for implementing surface convolutions, we explore the potential
to improve performance by ensembling predictions made across a range of
models.

3. Given the degree of heterogeneity and anticipated problems in generalising
to new data, we return estimates of model uncertainty using techniques for
Bayesian deep learning implemented using Monte Carlo dropout [8].

Methods

Participants and image acquisition

A total of 390 participants from the HCP were included in this study. Acquisi-
tion and minimal preprocessing pipelines are described in [12]. Briefly, modalities
included T1w and T2w structural images, task-based and resting state-based
fMRI images, acquired at high spatial and temporal resolution on a customized
Siemens 3 Tesla (3T) scanner [12]. From these, a set of 110 features were de-
rived and used as inputs for cortical parcellation: 1 thickness map corrected for
curvature, 1 T1w/T2w map [13], 1 surface curvature map, 1 mean task-fMRI
activation map, 20 task-fMRI component contrast maps, 77 surface resting state
fMRI maps (from a d=137 independent component analysis), and 9 visuotopic
features. This differs from 112 features used by the MLP classifier in [10] in
that artefact features were not included and visuotopic spatial regressors were
included. Individual subject parcellations predicted by the MLP classifier were
used as labels for training each gDL model, as there are no ground truth labels
available for multimodal parcellation in the HCP.

Modelling the cortex as an icosphere

For all experiments, the cortical surface was modelled as a regularly tessellated
icosphere: a choice which reflects strong evidence that, for many parts of the
cortex, cortical shape is a poor correlate of cortical functional organisation [7,
10]. Icospheres also offer many advantages for deep learning. Since their vertices
form regularly spaced hexagons, icospheric meshes allow consistently shaped
spatial filters to be defined and lend themselves to straightforward upsampling
and downsampling. This generates a hierarchy of regularly tessellated spheres
over multiple resolutions, which is particularly useful as it allows deep learning
models to aggregate information through pooling.

Image processing and augmentation

Spherical meshes and cortical metric data (features and labels) for each subject
were resampled from the 32k (FS LR) HCP template space [30], to a sixth-order
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icosphere (with 40,962 vertices). Input spheres were augmented using non-linear
spherical warps estimated by: first, randomly displacing the vertices of a 2nd
order icospheric mesh; then propagating these deformations to the input meshes
using barycentric interpolation. In total, 100 warps were simulated, and these
were randomly sampled from during training. Cortical metric data were then
normalised to a mean and standard deviation of 0 and 1 respectively, using
precomputed group means and standard deviations per feature.

(c)(b)(a)

(d) (e) (f) (g)

Fig. 1. Mean (top row) and standard deviation (bottom row) (a) Dice overlap ratio,
(b) recall score (c) and precision score per region for gDL ensemble. Mean (top row)
and standard deviation (bottom row) Dice overlap ratio per region for (d) ensemble
- ChebNet, (e) ensemble - GConvNet, (f) GConvNet - MoUNet, and (g) ensemble -
Spherical UNet

Model Architecture & Implementation

Geometric convolutions may be broadly classified into spatial or spectral meth-
ods, which reference the domain that the convolution is computed in (see [2, 9]
for more details). In brief, spatial methods [32, 22] simulate the familiar concept
of passing a localised filter over the surface. In practice, while expressive, such
methods often approximate mathematically correct convolutions; since, due to
lack of a single, fixed coordinate system it is not possible to slide a filter over
a curved surface whilst maintaining consistent filter orientation. Spectral meth-
ods, on the other hand, utilise an alternate representation in which the (gener-
alised) Fourier transform of a convolution of two functions may be represented
by the product of their Fourier transforms. As full spectral methods are compu-
tationally expensive, it is standard practice to address this through polynomial
approximation [4].
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Each method therefore results in different compromises, and for that reason
offers complementary solutions, which in principle may be combined to improve
performance. In this paper, we therefore benchmark and ensemble two spatial
networks: Spherical U-Net [32] and MoUNet [22]; and two spectral (polynomial
approximation) methods: ChebNet [4] and GConvNet [18].

In each case, methods were implemented with a U-Net [27] like architec-
ture with a 6-layer encoder and decoder, and upsampling was performed using
transpose convolution (as implemented by [32]). Code for Spherical U-Net was
implemented from its GitHub repository6 and ChebNet, GConvNet and MoUnet
were written using PyTorch Geometric [6]. Optimisation was performed using
Adam, with an unweighted Dice loss and learning rates: 1 × 10−3 (for Spherical
U-Net) and 1 × 10−4 (for all other models). All models were implemented on a
Titan RTX 24GB GPU, with batch size limited to 1 due to memory constraints
(resulting from the high dimension of input channels). Models were trained and
tested with a train/validation/test split of 338/26/26, using data from both left
and right hemispheres. Following training, an unweighted ensemble approach was
taken, where one-hot encoded predictions for a single test subject were averaged
across all gDL models. Model performance was also assessed using weighted re-
call and precision scores. Finally uncertainty estimation was implemented using
test-time dropout [8] (with p = 0.2, the probability of an input channel being
dropped). Vertex-wise uncertainty maps were produced by repeating dropout
200 times, and then calculating the standard deviation across each vertex of the
predicted parcellation per subject.

Results

Table 1 shows the overall performance each model on HCP parcellation using
single subject cortical maps predicted by the HCP MLP classifier. All methods
perform well, achieving a Dice overlap ratio of >0.85, recall score of >0.82 and
precision score of >0.85. The mean and standard deviation Dice overlap ratio,
recall and precision scores per area are shown for GConvNet (the best performing
model) in Figure 1a-c. V1 and cortical areas in the parietal lobe had higher a
mean and lower standard deviation Dice overlap ratio, whilst cortical areas in
the medial frontal lobe, occipital pole and insula had lower a mean and higher
standard deviation Dice overlap ratio. At the level of a single cortical region,
mean and standard deviation Dice overlap ratio varied across models (figure 1b-
d), and this regional variability was utilised through an ensemble approach to
improve parcellation performance (table 1).

The ability of gDL models to detect atypical cortical topography was assessed
qualitatively in a test-set participant where area 55b was split into three distinct
parcels by the frontal and posterior eye fields [11]. This showed that, while none
of the gDL models predicted this split (Figure 2b), vertex-wise uncertainty maps
highlighted the split as a region of uncertainty. Figure 3b demonstrates that

6 https://github.com/zhaofenqiang/Spherical U-Net
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Fig. 2. Label border (a) and estimated (b) border predicted by gDL ensemble for test
set participant with atypical area 55b topography. Borders are overlaid on T1w/T2w
map, and functional connectivity map from the HCP language task, and functional
connectivity map highlighting the frontal and posterior eye fields.

Table 1. Mean ± standard deviation Dice overlap ratio, recall, and precision for all
four geometric deep learning methods and the unweighted ensemble approach

Method Dice overlap ratio Recall Precision

ChebNet 0.871 ± 0.021 0.839 ± 0.024 0.862 ± 0.016

GConvNet 0.875 ± 0.020 0.843 ± 0.230 0.865 ± 0.015

MoUNet 0.873 ± 0.021 0.841 ± 0.023 0.864 ± 0.015

Spherical UNet 0.860 ± 0.021 0.825 ± 0.022 0.851 ± 0.013

Ensemble 0.880±0.019 0.848±0.022 0.860±0.019

the most likely labels for this subject (at the vertex marked with a white dot)
were the frontal eye fields (184/200 epochs) and area 55b (16/200 epochs). By
contrast, when compared to a similar vertex location in a subject with typical
parcellation in area 55b (figure 3c), there was no uncertainty in the estimated
label, predicting area 55b across all epochs.

Beyond area 55b, gDL models often predicted cortical areas as single con-
tiguous parcels, whereas the HCP MLP classifier predicted some cortical areas
as being comprised of several smaller, topographically-distinct parcels. This un-
certainty relative to the MLP is further emphasised by the findings from the
Monte Carlo dropout uncertainty modelling which showed that areas of uncer-
tainty tended to be greatest along the boundaries between regions, and were
higher in locations where >2 regions met.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.08.18.456790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.18.456790
http://creativecommons.org/licenses/by-nc-nd/4.0/


Geometric Deep Learning for Multimodal Cortical Parcellation 7

(b)

(c)

(a)

Fig. 3. (a) Example of a vertex-wise uncertainty map produced using Monte Carlo
dropout (MoUNet) (b) From left to right: label, estimate and vertex-wise uncertainty
map in subject with atypical topography of area 55b. (c) from left to right: label,
estimate and vertex-wise uncertainty map in subject with typical topography of area
55b.

Discussion

Developing methods that capture the topographic variability of cortical organi-
sation is essential for precision modelling of neuropsychiatric disorders. Here we
show that gDL methods achieve good performance in predicting subject’s corti-
cal organisation, when trained on labels output from the HCP MLP classifier.

Even though overall metrics of regional overlap were high, there was marked
variability across cortical areas. These findings are in part a consequence using
an unweighted Dice loss; since, in this case, mislabelling single vertices of smaller
cortical areas will have less impact than for larger ones [24]. This is reflected in
the results above, where larger regions e.g V1, and cortical areas in the parietal
lobe, had higher mean and lower standard deviation Dice overlap ratio, recall
and precision score per region. This is compared to smaller regions in the medial
frontal lobe, insula, and lateral occipital lobe, which had lower mean and higher
standard deviation. This inherent limitation of the Dice overlap ratio might
also explain why GConvNet (the gDL method with the smallest kernel size)
performed the best, as it was capable of learning very localised features. The
variation in performance across cortical areas also differed between models, which
suggests that each gDL model is learning a different set of features. This was
expected given the theoretical differences in how in each model’s convolution
is defined. Utilising these differences in an emsemble approach improved Dice
overlap ratio by 0.005 (0.5%) above GConvNet, which translates to an overlap
improvement of 200 vertices on a 6th-order icosphere (on the same icosphere,
area 55b is only 123 vertices in size).
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Although not described here, we also trained these gDL methods using a
generalised (weighted) Dice overlap ratio as described by [29] that is designed
to address class imbalance, but found that it did not perform as well as the
unweighted Dice overlap ratio. This suggests that future work on improving
model performance should, in part, address the limitations of common image
segmentation losses in the context of multimodal cortical parcellation.

Qualitative assessment of gDL model performance on cortical parcellation is
essential for investigating topographic variability, as this information is is not
fully captured by performance metrics. Although subjects with atypical topog-
raphy of area 55b were included in the training set, none of the gDL methods
were able to correctly identify this topography in a test-set subject. Specifically,
all models predicted area 55b as a contiguous parcel compared to the HCP MLP
prediction where it was split into three smaller areas by the frontal and poste-
rior eye fields. The atypical topography of area 55b in this subject was confirmed
manually from the features known to contribute to its multimodal fingerprint
(namely, T1w/T2w ratio, the HCP language task contrast ”Story vs. Baseline”
and resting-state functional connectivity map) [11].

The performance of the gDL models in area 55b highlights the overall ten-
dency of these models to predict cortical areas as contiguous regions compared
to those predicted by the HCP MLP classifier. This behaviour might be a result
of CNNs learning spatial context, and a strong bias towards learning typical
topographic organisation due to downsampling and skip connections in the U-
Net architecutre. In contrast, the HCP MLP was trained to classify each vertex
independently using limited spatial context (30mm radius searchlight across the
surface) [10]. The importance of spatial contiguity in defining cortical areas is
unknown, but given the lack of ground truth it is difficult to evaluate which ap-
proach is more accurate without extensive further qualitative and quantitative
evaluation. However, these results do suggest each model introduces unique bi-
ases that need to be accounted for when investigating cortical organisation and
neuropsychiatric disorders.

Achieving multimodal cortical parcellation in datasets beyond the HCP will
be invaluable for precision modelling of neuropsychiatric disorders. However,
generalising these multimodal labels to other datasets such as the UK Biobank
(healthy ageing adults) [21] and the Developing Human Connectome Project
(term and preterm neonates) [20] is challenging due to differences in population
demographics and data acquisition (less and lower quality). The vertex-wise
uncertainty maps introduced here provide a quantitative method to evaluate
label propagation, which also could be used to inform post-processing of indi-
vidual participant cortical parcellations, similar in nature to [10]. The informa-
tion about topographic variability encoded in these vertex-wise maps might also
provide a way to investigate atypical topography in less explored cortical areas.
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