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Abstract. During infancy, the human brain develops rapidly in terms
of structure, function and cognition. The tight connection between cog-
nitive skills and brain morphology motivates us to focus on individual
level cognitive score prediction using longitudinal structural MRI data.
In the early postnatal stage, the massive brain region connections contain
some intrinsic topologies, such as small-worldness and modular organiza-
tion. Accordingly, graph convolutional networks can be used to incorpo-
rate different region combinations to predict the infant cognitive scores.
Nevertheless, the definition of the brain region connectivity remains a
problem. In this work, we propose a crafted layer, the Inter-region Con-
nectivity Module (ICM), to effectively build brain region connections in
a data-driven manner. To further leverage the critical cues hidden in the
development patterns, we choose path signature as the sequential data
descriptor to extract the essential dynamic information of the region-wise
growth trajectories. With these region-wise developmental features and
the inter-region connectivity, a novel Cortical Developmental Connectiv-
ity Network (CDC-Net) is built. Experiments on a longitudinal infant
dataset within 3 time points and hundreds of subjects show our superior
performance, outperforming classical machine learning based methods
and deep learning based algorithms.

Keywords: Infant Cognition Prediction · Brain Region Connectivity ·
Longitudinal Analysis.

1 Introduction

Infancy is an immense period to shape individuals’ cognitive abilities [9]. There-
fore, building the direct quantitative relationship between the longitudinal cor-
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tical structure and the cognitive scales is significant for us to better understand
early brain development and related brain disorders. In this study, we aim to
take longitudinal brain structural MRI scans as input and predict Mullen scales
of early learning for each individual infant. Due to the challenges caused by the
small sample size problem and the dynamic brain characteristics of infants, there
are very few studies involving cognitive prediction [1,23].

Learning a set of compact representations, which effectively capture the spa-
tial and temporal cortical developmental patterns, is one of the most important
techniques to deal with the small sample size problem. However, existing meth-
ods usually simply flatten brain morphological feature vectors at every time point
into a vector [1,23,24], which obviously neglect the potential connectivity among
brain regions. It has been revealed that the massive brain region connections form
elegant topologies, such as small-worldness and modular organization, which can
be probed using the graph theoretical modeling method [25]. Hence, in recent
works of functional MRI analysis [7,19], researchers build brain connectivity by
Pearson’s correlation. This kind of brain connectivity may also be constructed
from structural MRI data and provide rich and useful information [18,6].

To explore the hidden dynamic information in growth trajectories, previous
works utilize a set of learnable matrices to fuse the structural information of brain
regions and get the predicted cognitive scales [1,23]. However, as brain regions
develop hetergeneously during infancy [16], it may be beneficial to get a more
effective temporal feature representation by designing a region-wise dynamic
dependency descriptor for the developmental trajectory of each region. Path
signature is a graded sequence of statistics to characterize streamed data. It has
been applied to acquire effective features of the path [13,17,14,24], and might
be helpful to extract the developmental information in brain regions.

In this work, our contributions are in three aspects. 1) We innovatively pro-
pose a Inter-region Connectivity Module (ICM) to adaptively connect brain re-
gion pairs for constructing brain region developmental connectivity. 2) Path
signature is used to extract the developmental features to describe the growth
trajectory of each brain region. 3) Taking the learned connectivity as an adja-
cent matrix and the developmental path signature feature as the node feature, a
Graph Convolutional Network (GCN) based predictor is leveraged to predict the
cognitive scores. The whole structure is called the Cortical Developmental Con-
nectivity Network (CDC-Net). Extensive experiments showed that our method
achieves the state-of-the-art performance among various baselines.

2 Dataset and Feature Extraction

Longitudinal T1w and T2w brain MR images from 110 subjects at 0, 1 and
2 years of age were acquired. The T1w imaging parameters were TR/TE =
1900/4.38 ms, Flip Angle = 7°, and isotropic 1 mm resolution; and the T2w
imaging parameters were TR/TE = 7380/119 ms, Flip Angle = 150°, and reso-
lution = 1.25×1.25×1.95 mm3. All images were processed by an infant-tailored
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Fig. 1. Flowchart of our proposed method, which consists of three parts, including the
developmental feature extractor, the developmental connectivity generator and a GCN-
based predictor. Two modules: Region-wise Development Module (RDM) and Inter-
region Connectivity Module (ICM), are proposed to extract developmental feature P
and developmental connectivity D.

public computational pipeline†. For each hemisphere, inner and outer cortical
surfaces were reconstructed [15] and 4 morphological features for each vertex
were computed, including the cortical thickness, surface area, average convexity,
and mean curvature. Then, we mapped the inner cortical surface onto a sphere
using FreeSurfer [5] and aligned the spherical surface onto the 4D Infant Cortical
Surface Atlas† to propagate the Desikan [4] parcellation with 70 regions from
the atlas onto each indiviudal surface. Finally, for each region, a 4-dimensional
feature, i.e., the average cortical thickness, total surface area, average absolute
convexity, and average absolute mean curvature were computed. Five Mullen
cognitive scores of early learning are estimated for each participant at 2 years
of age, i.e., Visual Receptive Scale (VRS), Fine Motor Scale (FMS), Receptive
Language Scale (RLS), Expressive Language Scale (ELS) and Early Learning
Composite (ELC).

3 CDC-Net

As illustrated in Fig. 1, our network consists of the development feature extrac-
tor, developmental connectivity generator and GCN-based predictor. Region-
wise Development Module (RDM) is proposed to extract developmental fea-
tures P of the longitudinal brain structural data. We select the developmental
path signature features, which combines path signature theory and deep learn-
ing framework to generate developmental path signature feature for each brain
region. Then, an Inter-region Connectivity Module (ICM) is proposed to learn
the relationship between brain region pairs, and generate a developmental con-
nectivity matrix D.

By considering brain regions as nodes, the developmental feature P can be
seen as node features, and the developmental connectivity matrix D is actually

† http://www.ibeat.cloud
† https://www.nitrc.org/projects/infantsurfatlas/
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an adjacent matrix of graph. By combining P and D, we acquire a complete
developmental graphGD = (P,D) to represent the developmental brain network.
Finally, a GCN-based score predictor which contains one 2-layer GCN and one
fully connected (FC) layer is used to predict the cognitive score.

3.1 Region-wise Development Module (RDM)

The region-wise development module is designed to extract the developmental
features for each brain region, which is critical to build a meaningful devel-
opmental connectivity matrix D. We can summarize the function of RDM as
follows:

Pi = fRDM (Xi), (1)

where X ∈ R70×3×4 represents our whole brain structural MRI data, Xi ∈ R3×4

is longitudinal features of the ith region, and Pi ∈ R32 means the developmental
feature of region i. The function fRDM (·) can be any sequential feature extractor,
which takes in the longitudinal feature of a brain region and returns its devel-
opmental features. In this work, we specifically introduce the path signature
method as one of its instantiations.

Path Signature Preliminary. Suppose χ : [a, b] → Rd is a d-dimensional
path defined on the time interval [a, b]. Conventionally, we regard the sequential
data such as the region-wise growth trajectory, has a natural path-like structure.
For any t ∈ [a, b], χ(t) can be written as {χ1

(t), χ
2
(t), · · · , χ

n
(t), · · · , χ

d
(t)}, where χn

(t)

denotes the nth coordinate of χ(t).

The signature of a path is a graded infinite series, which contains all the kth

fold iterated integrals. Let Sigk(χ)a,b denoted the truncated signature of χ up
to degree k as follows:

Sigk(χ)a,b =(1, S1(χ)a,b, S2(χ)a,b, · · · , Sk(χ)a,b), (2)

with the kth fold iterated integral calculated as: Sk(χ)n1,n2,··· ,nk

a,b = 1
k!

∏k
j=1(χ

nj

b −
χ
nj
a ). n1, n2, · · · , nk ∈ {1, 2, · · · , d} are the indexes of coordinates.

It is noteworthy that the first fold iterated integral S1(χ)a,b equals the incre-
ment of path χ during a certain time period. The higher fold iterated integrals
and path signature itself have many algebraic and analytic proprieties, which
make it an effective feature set of the streamed data. More details about path
signature can be found in [2].

Developmental Path Signature. In this work, we construct paths on the
growth trajectories of brain regions to explore the geometrical properties of the
developmental patterns. For each brain region, their structural feature of 0 year,
1 year and 2 years of age are constructed as a path of length 3 in chronological
order. Inspired by [11] that path signature transformation can be integrated into
the network as a layer, we propose our developmental path signature as,

Pi = W3 · [ReLU(Conv(W1 ·Xi))||(W2 · Sigk(W1 ·Xi))], (3)
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where W1, W2 and W3 are learnable matrices, which are introduced for a deep
integration between path signature theory and machine learning. Sigk computes
the developmental path signature features as defined in equation (2).

3.2 Inter-region Connectivity Module (ICM)

Inspired by the fMRI-based connectivity, the relationship between pairs of brain
regions may also benefit the sMRI data analyses. Considering the few sampling
time points (only 3 here), the Pearson correlation coefficient cannot sufficiently
describe the similarity between the growth trajectories of two brain regions.
Thereby, with the developmental features extracted, we designed an Inter-region
Connectivity Module (ICM) that learns a similarity coefficient for each pair of
brain regions, as shown in Fig. 2.

Fig. 2. Illustration of our ICM module. We calculate the cosine similarity of pairs of
brain regions by multiplying feature matrices, and then construct a symmetric connec-
tivity matrix D. Here n is the number of brain regions and c is the feature dimension.

With the developmental feature P from RDM, we evaluate the connectivity
coefficient between the ith and jth brain regions as follows:

fICM (Pi, Pj) =
(Wicm · Pi) · (Wicm · Pj)

ᵀ

||Wicm · Pi||2 · ||Wicm · Pj ||2
. (4)

Here Pi and Pj means the developmental feature of region i and j. This
equation essentially calculates the cosine similarity between the feature vector
of (Wicm ·Pi) and (Wicm ·Pj). The learnable parameter Wicm is introduced to
adaptively transform feature for the connectivity evaluation.

By calculating the similarity of all pairs of brain regions, we can get an adja-
cent matrix D = {di,j |di,j = fICM (Pi, Pj), di,j ∈ [−1, 1]}. It is based on develop-
mental matrix P , so we call D the developmental connectivity. fICM (Pi, Pj) =
fICM (Pj , Pi) is obviously symmetric according to equation (4).

3.3 GCN-based Score Predictor

Finally, we conduct the multi-layer graph convolution by using developmental
connectivity D ∈ R70×70 in equation (4) as the adjacent matrix ,and develop-
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mental features P ∈ R70×32 in equation (3) as node feature:

P l+1 = ReLU(D · P l ·Wgcn + P l), (5)

where superscript l means the layer of feature, and Wgcn is a learnable matrix
for GCN predictor. After a two-layer GCN, one fully connected layer is used to
predict the cognitive score.

4 Experiments

As mentioned in Section 2, we have five cognitive Mullen Scales of early learning,
including VRS, FMS, RLS, ELS and ELC. These five tasks are predicted together
by the proposed method, and we used Root Mean Squared Error (RMSE) to eval-
uate the prediction error. L2 loss function is used, and all learnable parameters
are initialized randomly and updated by BP algorithm. 5-fold cross validation
was taken for comprehensive assessment of the performance.

4.1 Ablation Study

In this paper, our CDC-Net consists of two new modules: ICM to adaptively
generate inter-region connectivity and RDM to extract the dynamic information
of region-wise growth trajectories. Here, we will show the effectiveness of our
ICM and developmental path signature by an ablation study.

From the GCN aspect, the connectivity matrix and node features both play
important roles. As for connectivity matrix, we compared three types of ma-
trices obtained by Pearson’s correlation, graph attention layer (GAT) [22] and
our ICM with raw data (A = {ai,j |ai,j = fICM (Xi, Xj)) separately. As for node
features, we used the raw feature X in Table 1. It can be observed that learnable
matrices, including GAT and ICM work better than static Pearson’s correlation
matrix, confirming that our ICM can construct more meaningful brain region
connectivity with few time points. Besides, benefited from the explicitly com-
putation in equation (4), our ICM performs better than GAT. In Table 2, we

Table 1. Evaluation of adjacent matrices for GCN backbone.

Methods
RMSE

VRS FMS RLS ELS ELC Average

Pearson 0.1855 0.1951 0.1680 0.1794 0.1757 0.1807±0.0178
GAT [22] 0.1784 0.1946 0.1760 0.1771 0.1598 0.1757±0.0203

ICM 0.1728 0.1819 0.1451 0.1641 0.1586 0.1645±0.0149

compared different sequential data descriptor, including GRU [3], LSTM [8] and
our Developmental Path Signature (DPS) to serve as the node features. GAT is
applied to build the cross-region connectivity. By replacing the other sequential
model with our developmental path signature, the overall performance of all five
cognitive scores is improved, verifying the effectiveness of our DPS feature.
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Table 2. Evaluation of sequential data descriptor for node features.

Methods
RMSE

VRS FMS RLS ELS ELC Average

LSTM [8] 0.1726 0.1867 0.1687 0.1761 0.1657 0.1740±0.0193
GRU [3] 0.1734 0.1867 0.1687 0.1763 0.1686 0.1717±0.0228

DPS 0.1727 0.1832 0.1504 0.1777 0.1582 0.1684±0.0192

4.2 Comparison with State-of-the-art Methods

In the past, some machine learning methods have been popular for analyzing
the brain sMRI, e.g., KNN [10], SVR [20] and RF [21]. Recently, with the devel-
opment of deep learning, more effective methods are available, e.g., LSTM [8],
GRU [3], GCN [12] and GAT [22].

We compared our CDC-Net with other popular methods mentioned above.
Table 3 shows the detailed RMSE of all methods and the ratio of performance
improvement compared to KNN. The GCN-based methods perform better than
the non-deep learning methods. With the assistance of sequential models to
provide developmental information, the performance is further improved. Our
proposed CDC-Net performs the best on almost all tasks by introducing the
effective inter-region connectivity module and developmental path signature fea-
tures. Considering the average performance of all tasks, our method reaches a
state-of-the-art RMSE 0.1631. It is noteworthy that BrainPSNet[24] introduces
the path signature in equation (2) to describe the development pattern of brain
regions, but it is poor-performed for neglecting the graph structure among brain
regions and the benefits may brought by the learnable matrices in equation (3).

Table 3. Comparison with state-of-the-art methods.

Methods
RMSE

VRS FMS RLS ELS ELC Average Ratio

KNN [10] 0.1878 0.1944 0.1680 0.1848 0.1767 0.1823±0.0220 0%
SVR [20] 0.1865 0.1988 0.1692 0.1789 0.1814 0.1830±0.0216 -0.4%
RF [21] 0.1892 0.1946 0.1666 0.1801 0.1824 0.1826±0.0216 -0.2%

GCN [12] 0.1855 0.1951 0.1680 0.1794 0.1757 0.1807±0.0178 +0.9%
GAT [22] 0.1784 0.1946 0.1760 0.1771 0.1598 0.1757±0.0203 +3.7%

LSTM+GCN 0.1765 0.1805 0.1660 0.1799 0.1644 0.1735±0.0193 +4.8%
GRU+GCN 0.1805 0.1895 0.1594 0.1683 0.1738 0.1743±0.0247 +4.4%

BrainPSNet [24] 0.1829 0.1873 0.1587 0.1776 0.1680 0.1749±0.0179 +4.2%
CDC-Net 0.1809 0.1796 0.1451 0.1568 0.1529 0.1631±0.0165 +11.5%

4.3 Illustration of Brain Region Developmental Connectivity

By averaging the developmental connectivity matrices of all subjects, we can get
the general brain region developmental connectivity, shown in Fig. 3. Fig. 3(a)
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is the whole connectivity matrix, while Fig. 3(b) only shows the top 3% strong
connections. Our 70 brain regions can be divided into 5 larger areas on each side
of the brain, and details can be consulted in [4].

(a) (b)

Fig. 3. Illustration of Brain Region Developmental Connectivity. (a) shows the whole
connectivity matrix and (b) shows top 3% strong connections.

Fig. 3(a) shows a phenomenon of modularization, indicating that brain re-
gions in the same area have similar function. Considering the top 3% connec-
tions in Fig. 3(b), most of the connections are concentrated in temporal lobe and
frontal lobe. Temporal lobe plays an important role in organizing language, while
frontal lobe controls the execution of voluntary of muscle movement and other
high-order functions. This is consistent with Mullen Scales assessment which
mainly involves language and motor skills. The brain regions with the strongest
connections incluce the precuneus cortex, transverse temporal cortex and cuneus
cortex, which are all involved in vision or language.

5 Conclusion

In the task of infant cognitive score prediction based on longitudinal brain struc-
ture data, we proposed two novel modules: Region-wise Developmental Module
(RDM) and Inter-region Connectivity Module (ICM). RDM is the feature ex-
tractor to explore the developmental information of brain regions, and ICM is
the connectivity matrix builder to construct connections between brain regions.
Our proposed method with RDM, ICM and 2-layer GCN backbone obtains the
state-of-the-art prediction result. Furthermore, by visualizing the brain region
developmental connectivity learned by RDM and ICM, we find that several brain
regions associated with cognitive ability are connected, demonstrating the ratio-
nality of our proposed framework.
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