Skip to main content

Knee Cartilages Segmentation Based on Multi-scale Cascaded Neural Networks

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12966))

Included in the following conference series:

  • 3909 Accesses

Abstract

Knee arthritis is one of the most common chronic degenerative joint diseases in the world, affecting the quality of life of a considerable part of the Modern population. Therefore, the early detection of knee arthritis is of great significance for diagnosis and treatment. Magnetic resonance imaging (MRI) is one of the most commonly used methods for evaluating joint degeneration in osteoarthritis research. In order to obtain information on knee cartilage degradation from MRI, it is necessary to segment the articular cartilage interface and cartilage surface boundary on the entire joint surface. In this work, we propose a novel cascaded network structure with an effective inception-like multi-scale module for knee joint magnetic resonance images segmentation. Compared with the baseline, a maximum of 1.6% dice score mean promotion is obtained. The code is publicly available at https://github.com/ETVP

Supported by Shanghai BNC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambellan, F., Tack, A., Ehlke, M., Zachow, S.: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: data from the osteoarthritis initiative. Med. Image Anal. 52, 109–118 (2019). https://doi.org/10.1016/j.media.2018.11.009

  2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587 (2017)

  3. Conaghan, P., Hunter, D., Maillefert, J.F., Reichmann, W., Losina, E.: Summary and recommendations of the oarsi fda osteoarthritis assessment of structural change working group. Osteoarth. Cartilage 19(5), 606–610 (2011)

    Google Scholar 

  4. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017). https://doi.org/10.1109/ICCV.2017.89

  5. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929 (2020)

  6. Emery, C.A., et al.: Establishing outcome measures in early knee osteoarthritis. Nat. Rev. Rheumatol. 15(7), 438–448 (2019). https://doi.org/10.1038/s41584-019-0237-3

  7. Górriz, M., Antony, J., McGuinness, K., Giró-i Nieto, X., O’Connor, N.E.: Assessing knee oa severity with cnn attention-based end-to-end architectures. In: International Conference on Medical Imaging with Deep Learning, pp. 197–214. PMLR (2019)

    Google Scholar 

  8. Han, X.: Automatic liver lesion segmentation using a deep convolutional neural network method. arXiv:1704.07239 (2017)

  9. Heimann, T., Morrison, B.J., Styner, M.A., Niethammer, M., Warfield, S.: Segmentation of knee images: a grand challenge. In: Proc. MICCAI Workshop on Medical Image Analysis for the Clinic, pp. 207–214. Beijing, China (2010)

    Google Scholar 

  10. Isensee, F., Petersen, J., Kohl, S.A., Jäger, P.F., Maier-Hein, K.H.: nnu-net: breaking the spell on successful medical image segmentation. arXiv:1904.08128 1, 1–8 (2019)

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001284

  12. Li, Y., Wei, X., Zhou, J., Wei, L.: The age-related changes in cartilage and osteoarthritis. BioMed research international 2013 (2013). https://doi.org/10.1155/2013/916530

  13. Liu, F., Zhou, Z., Jang, H., Samsonov, A., Zhao, G., Kijowski, R.: Deep convolutional neural network and 3d deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn. Reson. Med. 79(4), 2379–2391 (2018). https://doi.org/10.1002/mrm.26841

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015). https://doi.org/10.1109/CVPR.2015.7298965

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D vision (3DV), pp. 565–571. IEEE (2016). https://doi.org/10.1109/3DV.2016.79

  16. Oka, H., et al.: Fully automatic quantification of knee osteoarthritis severity on plain radiographs. Osteoarth. Cartilage 16(11), 1300–1306 (2008). https://doi.org/10.1016/j.joca.2008.03.011

  17. Panfilov, E., Tiulpin, A., Klein, S., Nieminen, M.T., Saarakkala, S.: Improving robustness of deep learning based knee MRI segmentation: Mixup and adversarial domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019). https://doi.org/10.1109/ICCVW.2019.00057

  18. Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 246–253. Springer (2013). https://doi.org/10.1007/978-3-642-40763-5_31

  19. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241. Springer (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  20. Roth, H.R., et al.: An application of cascaded 3d fully convolutional networks for medical image segmentation. Comput. Med. Imaging Graph. 66, 90–99 (2018). https://doi.org/10.1016/j.compmedimag.2018.03.001

  21. Shamir, L., Ling, S.M., Scott, W., Hochberg, M., Ferrucci, L., Goldberg, I.G.: Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarth. Cartilage 17(10), 1307–1312 (2009). https://doi.org/10.1016/j.joca.2009.04.010

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  23. Stammberger, T., Eckstein, F., Michaelis, M., Englmeier, K.H., Reiser, M.: Interobserver reproducibility of quantitative cartilage measurements: comparison of b-spline snakes and manual segmentation. Magn. Reson. Imaging 17(7), 1033–1042 (1999). https://doi.org/10.1016/S0730-725X(99)00040-5

  24. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  25. Tiulpin, A., Saarakkala, S.: Automatic grading of individual knee osteoarthritis features in plain radiographs using deep convolutional neural networks. Sci. Rep. 8(1) (2018). https://doi.org/10.1038/s41598-018-20132-7

  26. Zhang, L., et al.: Block level skip connections across cascaded v-net for multi-organ segmentation. IEEE Trans. Med. Imaging 39(9), 2782–2793 (2020). https://doi.org/10.1109/TMI.2020.2975347

  27. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: a nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 3–11. Springer (2018). https://doi.org/10.1007/978-3-030-00889-5_1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Hua, C., Zhang, L., Li, P., Lu, X. (2021). Knee Cartilages Segmentation Based on Multi-scale Cascaded Neural Networks. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics