
STRUDEL: Self-Training with Uncertainty
Dependent Label Refinement across Domains
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Abstract. We propose an unsupervised domain adaptation (UDA) ap-
proach for white matter hyperintensity (WMH) segmentation, which uses
Self-TRaining with Uncertainty DEpendent Label refinement (STRUDEL).
Self-training has recently been introduced as a highly effective method for
UDA, which is based on self-generated pseudo labels. However, pseudo
labels can be very noisy and therefore deteriorate model performance.
We propose to predict the uncertainty of pseudo labels and integrate it
in the training process with an uncertainty-guided loss function to high-
light labels with high certainty. STRUDEL is further improved by incor-
porating the segmentation output of an existing method in the pseudo
label generation that showed high robustness for WMH segmentation.
In our experiments, we evaluate STRUDEL with a standard U-Net and
a modified network with a higher receptive field. Our results on WMH
segmentation across datasets demonstrate the significant improvement
of STRUDEL with respect to standard self-training.

1 Introduction

Dementia presents a highly relevant societal challenge due to the ever-aging pop-
ulation. Research shows that aging-related structural and functional changes
in the brain may manifest as cerebral small vessel disease (SVD), which is a
major contributor to the risk of developing dementia [16]. A promising neu-
roimaging biomarker for SVD are white matter hyperintensities (WMHs) of pre-
sumed vascular origin. WMHs are visible in fluid-attenuated inversion recovery
(FLAIR) magnetic resonance imaging (MRI) as diffuse regions of brighter inten-
sity than surrounding white matter [14]. Convolutional neural networks (CNNs)
have achieved remarkable performances for WMH segmentation [11]. However,
CNNs are highly dependent on the training set and the performance can steeply
decrease on a target domain with a large domain shift. In a recent compari-
son, this resulted in traditional segmentation software producing higher quality
WMH labels than CNNs [24]. Unsupervised domain adaptation (UDA) attempts
to overcome the problem of domain shift without using target data annotations.
Not relying on target annotations is a key benefit, as medical annotations are typ-
ically scarce and therefore will not cover the wide range of acquisition protocols,
scanner types, artifacts, or patient statistics that make up domain differences in
MRI. Self-training is a recent approach for UDA, where a segmentation model is
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Fig. 1: Illustration of a FLAIR scan with (1) ground truth WMH, (2) noisy
pseudo labels, and (3) corresponding uncertainty map. White arrows point to
false positive predictions with higher uncertainty values (brighter pixels).

first trained on annotated source data and then applied on target data to infer
pseudo labels. These self-generated pseudo labels are then integrated into the
network training to achieve the domain adaptation. However, pseudo labels tend
to be noisy, as illustrated in Fig. 1, which necessitates estimating the reliability
of pseudo labels to avoid propagating label errors.

In this work, we propose STRUDEL, a Self-TRaining approach with Uncer-
tainty DEpendent Label refinement. It is motivated by earlier work on brain
lesion segmentation [12], which demonstrated that uncertainty measures are an
indicator for erroneous pixel-wise predictions. Following a Bayesian segmenta-
tion approach, we estimate the uncertainty for pseudo labels, see Fig. 1, and then
integrate it in successive model refinements with an uncertainty-guided loss func-
tion. To further improve the initial pseudo label generation in STRUDEL, we
propose to integrate the output of the lesion prediction algorithm (LPA) [19],
which was reported to achieve robust results across domains [24]. In our exper-
iments, we evaluate STRUDEL with a U-Net as the backbone and a modified
network with a higher receptive field. Our results on WMH segmentation across
datasets demonstrate the necessity for domain adaptation and further the signif-
icant improvement for integrating uncertainty and LPA in the training process.

1.1 Related work

White Matter Hyperintensity Segmentation methods have recently been assessed
in the WMH challenge [11]. All top-ranking methods were deep-learning-based
and some have achieved superior performance to human observers. Specific inter-
scanner robustness experiments showed there is still a need for improving the
robustness of these methods which coincides with the findings in [24].

Unsupervised Domain Adaptation (UDA) approaches transfer a model from a
source domain without direct supervision on the target domain and are com-
monly based on adversarial learning. These types of methods attempt to learn
domain invariant features by minimizing the discrepancy between source and
target domain or convert images from one domain to the other. Different ap-
proaches have demonstrated their effectiveness for medical applications [10,9].
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Fig. 2: Illustration of our Self-Training pipeline for domain adaptation.

However, the training process for adversarial networks can be a multi-faceted
and complex endeavor [1,15].
Self-training presents an alternative approach to UDA, which has recently been
shown to be highly efficient [28]. It follows the principle that predictions gener-
ated in previous steps are used as pseudo labels for the next stage of network
learning. The literature has addressed self-training for semantic segmentation in
non-medical and medical applications and showed state-of-the-art performance
on benchmark datasets [29,30,20,13,26,25]. A further categorization of methods
for handling limited dataset annotations is available in the review by Tajbakhsh
et al. [21]. The potential of integrating uncertainty guidance in self-training was
recently demonstrated for segmenting sparsely annotated micro-CT scans [27].

2 Methods

2.1 Problem Definition

Given a labeled dataset from the source domain S with samples XS = {xSi }Ni=1

and labels Y S = {ySi }Ni=1, and an unlabeled dataset from the target domain T
with samples XT = {xTi }Mi=1, the goal is to predict labels in the target domain.
We want to achieve this goal by incorporating the large number of unlabeled
target samples in the network training, where typically M > N . In self-training,
this is achieved by inferring pseudo target labels ỹT and updating them itera-
tively to improve the label quality and consequently the learning process.

2.2 STRUDEL: Self-Training with Uncertainty

Fig. 2 provides a graphical overview of our proposed Self-TRaining with Un-
certainty DEpendent Label refinement, with the pseudo-code in Algorithm 1.
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Algorithm 1: Self-Training with Uncertainty on Noisy Labels

input : Source data XS , Source labels Y S , Target data XT

output: Output model MK

1 r()← random sampler;

2 M0 ← train base model with (XS , Y S);

3 Dfix ← (XS , Y S) ; // initialize fixed training set

4 for k ← 1 to K do
5 XT

k ← r(XT ) ; // sample random subset

6 Ỹ T
k ← pixel − wise or(Mk−1(XT

k ), LPA(XT
k )) ; // init. pseudo labels

7 Dk ← Dfix ∪ (XT
k , Ỹ T

k ) ; // merge training data

8 Mk−1 ← fine-tune Mk−1 with Dk;

9 Ỹ T
k , Uk ←Mk−1(XT

k ) ; // update labels and get uncertainty

10 D′k ← Dfix ∪ (XT
k , Ỹ T

k ) ; // merge training data

11 Mk ← re-train model with D′k and uncertainty Uk;

12 Dfix ← Dfix ∪ (XT
k ,Mk(XT

k )) ; // update fixed training set

13 end
14 returnMK ;

First, we pre-train a base model on the source dataset
(
XS , Y S

)
with standard

supervised learning. The base model is then applied to a random subset (drawn
without replacement) of the target sample, r(XT ), of size P to infer pseudo la-
bels. However, these pseudo labels will initially not be of high quality due to the
domain gap. Consequently, we propose to leverage existing WMH segmentation
software, where we use LPA, to increase the quality of pseudo labels. To this
end, we apply a pixel-wise OR operator between base model predictions and
LPA prediction to obtain the pseudo target labels Ỹ T = {ỹTi }Pi=1.
In a third step, the base model is fine-tuned with Ỹ T . With this model, we seg-
ment again the same random sample drawn earlier, r(XT ), producing pseudo
labels of higher quality. Here, we assume that a model can generate better pre-
dictions than its noisy training labels [6]. Next to the labels, we also infer the
segmentation uncertainty U at this stage. Finally, a new model is trained from
scratch, where we add the updated pseudo labels Ỹ T with the corresponding
uncertainty U to the training set. Training a new model at this point has advan-
tages over fine-tuning as also noted in [28]. The labels inferred from this model
on the random subset are then added to the fixed training set, which initially
only consists of the annotated source data. We then continue with the next iter-
ation in step 2, where this model serves as a base model, another random subset
is sampled and pseudo labels are inferred.

2.3 Uncertainty-Guided Pseudo Labels

Inferring pseudo target labels usually has the disadvantage of label noise. To in-
crease the robustness of our method against label noise, we propose an uncertainty-
guidance that strengthens regions of low uncertainty and penalizes regions of
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high uncertainty. To estimate the uncertainty, we follow a Bayesian machine
learning approach with an estimation of Monte Carlo (MC) samples by dropout [5].
Accordingly, we train the backbone segmentation network with dropout layers
and perform C stochastic forward passes at test time to obtain Monte Carlo
samples. The expectation over the MC samples E(ŷ) provides us a more robust
label prediction, which we use to update the pseudo-label. Further, computing
the variance across C MC samples gives us a pixel-wise measure of uncertainty
of the predicted segmentation:

U(ŷ) = {σ1, ..., σH×W } =
1

C

C∑
i=1

(ŷi − E(ŷ)))
2
, (1)

where U(ŷ) denotes the uncertainty map, σi the pixel-wise variance, H,W the
images height and width, and ŷi the model prediction from the ith MC sample.
Anticipating small values for the uncertainties, we rescale the values into the
range [0, 1]. We integrate the uncertainty into network training by the definition
of an uncertainty-aware binary cross entropy (UBCE) loss:

LUBCE = − 1

H ×W

H×W∑
n=1

(1− σn) [ỹn · log (ŷn) + (1− ỹn) · log (1− ŷn)] . (2)

Note that the uncertainty-aware cross entropy LUBCE is only applied to pseudo-
labeled data within the re-training step (see Algorithm 1 line 11), whereas the
standard cross entropy LBCE is applied to fixed data samples. The combined
loss function is defined as:

L = LDice + LBCE + LUBCE. (3)

2.4 Segmentation Backbone Architectures

For the segmentation model M , we evaluate two neural network architectures.
First, the U-Net [17], which has proven its performance in difficult segmenta-
tion tasks and has been adapted and improved for various applications since
then. Second, to explore the effects of a superior model architecture within the
framework, we include a novel network architecture, the OctSE-Net, which in-
troduces two modifications to the U-Net. The first modification is to replace all
convolution layers with octave convolutions [4], which factorize feature maps by
their frequencies. Octave convolutions can increase segmentation performance,
by offering a wider context, while reducing memory consumption. The second
modification is to integrate squeeze & excitation (SE) blocks [8], more precisely
the channel and spatial SE block [18], which can boost accuracy by re-calibrating
feature maps. Both modifications increase the receptive field without substan-
tially increasing model parameters. This can improve the segmentation accuracy
without encouraging overfitting and therefore help the generalization across do-
mains. For uncertainty estimation, we insert dropout layers after each convolu-
tional block in both architectures.
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3 Experiments and Results

3.1 Datasets

As source dataset, we use data from the WMH challenge (https://wmh.isi.uu.nl),
and, as target dataset, we use data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (http://adni.loni.usc.edu). The WMH segmentation challenge
dataset provides manual annotations for 60 subjects from 3 sites. For each sub-
ject, co-registered 3D T1-weighted and 2D multi-slice FLAIR scans are available,
where we work with bias-field corrected T1 scans and original FLAIR scans as
suggested by [7,22]. The large ADNI-2 dataset [3] with over 3,000 scans from
58 sites serves as our multi-domain target data. For each subject, T1-weighted
and 2D FLAIR scans are available, which we have linearly aligned within a ses-
sion with ANTs [2]. T1 scans have further been bias field corrected with N4
normalization [23], using the ANTs implementation. To quantitatively evaluate
our methods on the ADNI dataset, we extracted a subset of 30 subjects based
on scanner type and WMH lesion load for manual annotation3. 21 of these
annotated scans serve solely as a test set and 9 are used to train alternative
segmentation approaches, described in the next section.

3.2 Implementation Details

We implemented the proposed framework and all baseline experiments in Py-
torch v.1.6.03. Experiments were performed employing the Adam optimizer with
default parameters (betas=(0.9, 0.999), eps=1e-08), learning rate 1e-4 and batch
size 4. Image intensities were normalized to zero-mean and unit-variance and ax-
ial slices center cropped to a consistent size of 192×192 pixels across all datasets.
Standard spatial augmentation techniques (flipping, rotation, scaling, and elas-
tic transformation) were used during training for regularization. In self-training,
the size of the random subset per iteration is set to P = 35. The thresholds to
obtain binary segmentation maps for the creation of pseudo-labels were set to 0.5
and 0.75 for the network prediction and LPA, respectively. The high threshold
for LPA mitigates hypersensitive responses. We use 80 epochs for training from
scratch and 20 epochs for fine-tuning. We set the number of stochastic forward
passes to C = 10. We found that increasing C further does not improve the
segmentation performance. The drop-out rate was set to 0.2. No explicit post-
processing was performed in any experiment. A Geforce Titan RTX GPU was
predominantly used for training and testing.

3.3 Experiments

We perform several experiments to evaluate the domain transfer performance of
different approaches. First, as Base Model, we directly apply a model trained
on the source data on the target domain data without any adaptation. Next, we

3 Code and manual segmentations will be made publicly available upon acceptance.

https://wmh.isi.uu.nl
http://adni.loni.usc.edu
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Table 1: Comparison of segmentation methods, network architectures, type of
used data (S: Source manual labels, T: Target manual labels, P: target pseudo
labels), and their mean performance ± standard deviation on the metrics: Dice
Coefficient (DSC), 95th Percentile Hausdorff Distance (H95), log transformed
absolute volume difference (lAVD), lesion Recall and F1.

Methods S T P DSC ↑ H95 [mm] ↓ lAVD ↓ Recall ↑ F1 ↑

LPA 7 7 7 0.57±0.16 23.1±23.4 0.71±0.49 0.81±0.16 0.39±0.18

U-Net

Base Model 3 7 7 0.45±0.28 27.1±37.5 1.09±1.70 0.67±0.32 0.48±0.21

Joint Model 3 3 7 0.64±0.19 17.2±25.0 0.60±0.52 0.74±0.29 0.52±0.15

Fine-Tuning 3 3 7 0.73±0.16 11.2±23.0 0.36±0.41 0.75±0.22 0.65±0.14
Self-Training 3 7 3 0.64±0.20 17.8±28.8 0.51±0.68 0.51±0.27 0.50±0.23

STRUDEL 3 7 3 0.69±0.18 11.2±14.5 0.30±0.32 0.58±0.27 0.64±0.22

OctSE-Net

Base Model 3 7 7 0.60±0.23 19.7±29.5 0.77±1.12 0.80±0.26 0.61±0.19

Joint Model 3 3 7 0.73±0.15 11.8±24.7 0.34±0.37 0.89±0.10 0.59±0.14

Fine-Tuning 3 3 7 0.73±0.15 11.4±23.4 0.41±0.38 0.77±0.18 0.64±0.17

Self-Training 3 7 3 0.73±0.13 14.7±18.2 0.25±0.27 0.56±0.21 0.63±0.17

STRUDEL 3 7 3 0.78±0.10 7.79±8.52 0.27±0.23 0.77±0.16 0.70±0.15
↪→ w/o LPA 3 7 3 0.67±0.20 12.9±13.4 0.63±0.58 0.58±0.23 0.66±0.18

evaluate two approaches that use a small labeled subset of the target domain
during training. The Joint Model combines the target and source training
data, and the Fine-Tuning model uses the labeled target data to fine-tune the
Base Model. Finally, we evaluate two UDA approaches with pseudo labels: Self-
Training without uncertainty guidance and the proposed STRUDEL with un-
certainty guidance, both using LPA labels. We also report results for STRUDEL
without LPA and for LPA itself, where we set the threshold parameter to 0.45,
as suggested in [24] for ADNI. We evaluate the segmentation accuracy for all
experiments by following evaluation metrics suggested by the WMH segmenta-
tion challenge [11]: (1) Dice Similarity Coefficient (DSC), (2) modified Hausdorff
distance (95th percentile; H95), (3) absolute log-transformed volume difference
(lAVD), (4) sensitivity for detecting individual lesions (Recall), and (5) F1-score
for individual lesions (F1).

3.4 Results & Discussion

Table 1 reports the quantitative segmentation results on the ADNI target do-
main. Fig. 3 shows the DSC in more details as boxplots. As a reference, the DSC
of the Base Models on the source dataset are 0.73 for U-Net and 0.76 for OctSE-



8 Gröger et al.

Fig. 3: Boxplot of Dice Similarity Coefficient for the different methods. Points
outside the whiskers are determined as outliers based on the inter-quartile range.

Net. We observe that the direct transfer of the Base Model on the ADNI dataset
performs poorly, regardless of the backbone architecture. LPA beats the baseline
U-Net by a large margin, which is in accordance with the results described in [24].
OctSE-Net outperforms LPA, which confirms our assumption that OctSE-Net
is a more robust architecture. However, the more detailed results in Fig. 3 show
that both base models produce some predictions with zero DSC, whereas LPA
does not. These outliers can lead to poorly initialized pseudo labels, which is the
reason for including LPA in pseudo-label initialization, confirmed by the bad
results for STRUDEL w/o LPA. We report results for all self-training-based ex-
periments after 5 iterations, as no further improvement was observed afterwards.
STRUDEL outperforms all other methods in DSC and H95, and is best or sec-
ond best in lAVD and lesion F1. LPA and the joint model perform best in terms
of lesion recall. Both of these methods have relatively poor performance in lesion
F1, which is the result of a high number of false positive predictions. STRUDEL
performs strongly in both metrics, which we believe is due to the uncertainty
capturing false positives reliably. Results of a Wilcoxon signed-rank test on DSC
show that the improvement of STRUDEL with respect to Self-Training is signif-
icant for OctSE-Net (p < 0.005) and also that the improvement of OctSE-Net
with respect to U-Net is significant for STRUDEL (p < 0.001).

4 Conclusion

Self-Training is a simple and effective approach for UDA, however noisy pseudo
labels can limit its effectiveness. In this work, we proposed STRUDEL, an
uncertainty-guided self-training method for unsupervised domain adaptation.
We found that introducing uncertainty into the objective function can efficiently
guide the learning process in the presence of noisy labels. We further demon-
strated that leveraging an existing algorithm (LPA) for pseudo label initializa-
tion can additionally boost performance. Our experimental results showed that
Self-Training with uncertainty guidance is a strong approach for UDA, which in
combination with a strong and robust network architecture, can even outperform
supervised methods.
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