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Abstract. The current state-of-the-art deep neural networks (DNNs)
for Alzheimer’s Disease diagnosis use different biomarker combinations
to classify patients, but do not allow extracting knowledge about the
interactions of biomarkers. However, to improve our understanding of
the disease, it is paramount to extract such knowledge from the learned
model. In this paper, we propose a Deep Factorization Machine model
that combines the ability of DNNs to learn complex relationships and
the ease of interpretability of a linear model. The proposed model has
three parts: (i) an embedding layer to deal with sparse categorical data,
(ii) a Factorization Machine to efficiently learn pairwise interactions, and
(iii) a DNN to implicitly model higher order interactions. In our experi-
ments on data from the Alzheimer’s Disease Neuroimaging Initiative, we
demonstrate that our proposed model classifies cognitive normal, mild
cognitive impaired, and demented patients more accurately than com-
peting models. In addition, we show that valuable knowledge about the
interactions among biomarkers can be obtained.

Keywords: Alzheimer’s Disease · Biomarkers · Interactions · Factoriza-
tion Machines.

1 Introduction

Alzheimer’s Disease (AD) patients account for 60–80% of all dementia cases [3].
Worldwide, 50 million patients have dementia and their number is estimated
to triple by 2050 [17]. AD is a neurodegenerative disease whose progression is
highly heterogeneous and not yet fully understood [22]. Mild cognitive impair-
ment (MCI) is a pre-dementia stage which results in cognitive decline, but not
to an extent that it impairs patients’ daily live [18]. Subjects with MCI are at
an increased risk of developing dementia due to AD, which would make them
completely dependent upon caregivers [18]. This transition is complex and not
yet fully understood. Therefore, research in the last decade focused on identify-
ing biomarkers to infer which stage of the disease a patient is in [11]. Important
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biomarkers include demographics, brain atrophy measured by magnetic reso-
nance images (MRI), and predispositions due to genetic alterations in the form
of single nucleotide polymorphisms (SNPs) (see [22] for a detailed overview).

For accurate patient stratification it is important to also consider the inter-
relationships between biomarkers and model their interactions. Deep learning
techniques excel at implicitly learning complex interactions, but extracting this
knowledge is challenging due to their black-box nature [1]. At the other end of
the spectrum are linear models that are highly interpretable, but only account
for interactions when those are explicitly specified. Hence, approaches that can
model complex interactions while preserving interpretability are required to fur-
ther improve our understanding of the interaction between biomarkers.

In this work, we propose a model that is able to utilize both low- and high-
order feature interactions. Our model comprises two parts: (i) a Factorization
Machine (FM) that explicitly learns pairwise feature interactions without the
need of feature engineering, and (ii) a deep neural network (DNN) that can learn
arbitrary low- and high-order feature interactions implicitly. Consequently, our
model preserves the best of both worlds: the interpretability of linear models
– via the FM – and the discriminatory power of DNNs. In our experiments,
we demonstrate that our proposed model outperforms competing methods for
classifying healthy controls, patients with MCI, and patients with AD.

2 Related Work

Several existing works study the fusion of multi-modal data for AD diagnosis
and the interaction between features. Zhang et al. [33] use MRI, FDG-PET, and
biomarkers derived from cerebrospinal fluid (CSF). They use a multiple-kernel
SVM that uses one kernel per modality and combines modalities by a weighted
sum of modality-specific kernels. This way, interactions can only be addressed
implicitly by absorbing them into the sum of kernels and interpretability is lost.

Tong et al. [28] introduce a non-linear graph fusion approach for multi-
modal AD diagnosis. Their approach can assign an overall importance value
to each modality in a manner that scales independently of the number of fea-
tures. However, this does not allow for modelling interactions between single
features. Khatri et al. [12] use an Extreme Learning Machine (ELM) – a single
layer feed-forward neural network (NN). They use regional volume and thickness
measurements, CSF biomarkers ApoE allele information, and the Mini-Mental
State Examination (MMSE) cognitive score. Because of the use of MMSE, their
model is not solely based on biological measurements, but includes diagnostic
information, which usually is among the variables of interest. Moreover, ELMs
are a type of neural network, which makes their interpretation difficult [16,29].
In [30], a “Multimodal deep learning [model] for early detection of Alzheimer’s
Disease stage” is proposed. They account for the lack of interpretability of DNNs,
by running the model multiple times with one feature masked at a time. The
sharper the drop in performance, the higher they rank the importance of the
masked feature. While this provides a measure of importance on a per-feature
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Fig. 1. Overview of the proposed model.

level, it ignores how the model utilizes feature interactions. Ning et al. [15] use
a two hidden layer NN to perform AD diagnosis based on MRI-derived features
and genetics. They attempt to determine the importance of features and feature
interactions via back-propagation based on the partial derivatives method [5].
The authors point out that it remains to be tested how well the computed im-
portance measure reflects the actual prediction computation by their model.

Finally, we want to emphasize that all the existing approaches only study
feature interactions by trying to disentangle what the model learned in a post-
hoc manner, but not how changes to the model architecture can make the model
itself more interpretable.

3 Methods

The proposed model comprises three major parts for improved AD diagnosis (see
fig. 1). The first part is an embedding layer to deal with sparse data [6]. The
second part is based on the Factorization Machine [20], which models pairwise
feature interactions as an inner product of latent vectors from the embedding
layer. The third part is a Deep Neural Network (DNN) that has the potential
to implicitly learn complex feature interactions. The combined model is closely
related to the DeepFM [6] for click-through-rate prediction. We train our model
to differentiate between three groups: AD, MCI and CN patients.

3.1 Embedding Layer

The first layer is an embedding layer, similar to the one in [6]. The layer serves
two purposes: First, DNNs are unable to train on sparse data, and second, one
feature can span multiple columns if it is e.g. a one-hot encoded categorical fea-
ture. Via the embedding, each feature is represented as one dense vector, which
leads to a more comprehensible representation. The embedding layer condenses
each d-dimensional feature xi into a vector ei with fixed length m: ei = Aixi,
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where Ai ∈ Rm×d is the learned embedding matrix for feature i ∈ {1, . . . , n}.
The embedding vector ei represents the entire feature and eliminates the prob-
lems that arise when training neural networks on sparse data – in particular,
when categorical features with many categories are present, because the embed-
ding layer reduces the dimensionality compared to a one-hot encoding.

Another advantage of the embedding layer is that it can be used to combine
sets of features describing whole brain areas. For instance, one can combine the
volume measurements of all regions belonging to the temporal lobe into one
embedding vector. Therefore, the embedding layer can be used as a mean to
incorporate domain knowledge about the structural or functional relationship
between features. As AD is a highly heterogeneous disease and brain regions
are strongly interrelated, this can improve predictive performance as well as
interpretability of interaction effects, which we will discuss next.

3.2 Factorization Machine

The Factorization Machine (FM; [20]) consists of three parts: a bias, a linear
predictor, and a pairwise-interaction term (for simplicity, we omit the bias in
fig. 1). For an n-dimensional feature vector x, the FM for class c is defined as:

ŷcFM(x) = w0︸︷︷︸
bias

+
∑n

i=1 wixi︸ ︷︷ ︸
linear predictor

+
∑n

i=1

∑n
j=i+1〈ei, ej〉xixj︸ ︷︷ ︸

interaction term

(1)

The key idea of the FM is to not learn interaction weights explicitly, which
would scale quadratically in the number of features, but implicitly through the
dot product 〈ei, ej〉. Hence, weights are shared across interaction terms and
one has to learn n embedding matrices Ai instead of n2 weights that would be
required for explicit interaction modelling. To preserve the linear complexity of
the linear model, while still accounting for pairwise interactions, we reformulate
the pairwise-interaction computation as in [20], resulting in a O(kn) runtime.

3.3 Deep Factorization Machine

So far, our model only accounts for linear and pairwise interactions. We account
for high-order interactions implicitly by employing a DNN alongside the FM from
above [6] (see fig. 1). The DNN receives the concatenated embedding vectors ei,
and thus is equipped to learn from high-dimensional sparse data. The DNN
contains two hidden layers with ReLU activation function σ(x) = max(0, x):

ŷcDNN(x) = σ(W(1) · σ(W(0) · CONCAT(e1, . . . , en) + b(0)) + b(1)), (2)

where W(k) and b(k) are the weight matrix and bias of the k-th layer, respec-
tively. Finally, the overall prediction for class c of our DeepFM model is:

ŷc(x) = Softmax (ŷcFM(x) + ŷcDNN(x)) , (3)

where ŷcFM is the factorization machine defined in equation (1). During training,
we optimize the weights of the FM part (w0, . . . , wn), the embedding matrices
A1, . . . ,An, which are shared among the FM and deep part of our model, and
the parameters of the DNN (W(0),W(1),b(0),b(1)).
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Table 1. Overview of the data used in our experiments (MMSE is not used as feature).

Feature AD-patients MCI-patients NC-patients
min mean max min mean max min mean max

MMSE 10.0 21.9 30.0 10.0 27.5 30.0 20.0 29 30.0
Age 55.0 74.4 90.9 54.4 73.1 91.4 55.0 73.9 90.1
Education (Years) 4.0 15.45 20.0 6.0 16.03 20.0 6.0 16.43 20.0
Gender 58.3 % Male 61.8% Male 52.3 % Male

4 Experiments

We evaluated the proposed model on data provided by the Alzheimer’s Disease
Neuroimaging Initiative [10]. Table 1 summarizes the data. Our dataset con-
tains a total of 1492 patients with 6844 visits and three class labels: AD (1536
visits), MCI (3131 visits), cognitive normal (CN; 2177 visits). In addition to
demographic data, we collected for each patient MRIs and processed them with
FreeSurfer [4] to obtain 20 volume and 34 thickness measurements. Moreover,
we collected Amyloid-β (Aβ), Tau, and phosphorylated Tau (pTau) concentra-
tion in CSF. Finally, we collected 41 genetic markers, previously shown to be
associated with AD and atrophy [8,13], as described in [31]. Except for CSF mea-
surements, which are only available for 1863 visits, each modality is available for
all patients. Aβ, Tau, and pTau are important biomarkers and in order to not
heavily reduce the available data, we keep them and handle missing values as
zero, to get as good as a prediction as possible. In total, we used 109 features.

To avoid data leakage due to confounding effects of age and sex [32], we
split the data into 5 non-overlapping folds using only baseline visits such that
diagnosis, age and sex are balanced across folds [9]. We used one fold as test set
and combined the remaining folds such that 80% of it comprise the training set
and 20% the validation set. We extended the training set, but not validation or
test, by including each patient’s longitudinal data.

We optimized the models’ hyperparameters (see table 2) for each of the five
folds separately via Bayesian black-box optimization on the validation set [7]. We
compare the proposed DeepFM to a standalone DNN, the FM [20], and a linear
logistic regression model that explicitly accounts for all pairwise interactions.
Each model is evaluated by the balanced accuracy on the respective test set.

Table 2. Hyperparameter Search Space. U uniform-/LU log-uniform-distribution.

Hyperparameter DeepFM FM DNN Linear

Neurons Layer 1 U(1, 400) - U(1, 400) -
Neurons Layer 2 U(1, 400) - U(1, 400) -
Neurons Layer 3 - - U(0, 400) -
Length Embedding Vector U(1, 20) U(1, 20) U(1, 20) -

Learning Rate LU(1e−04, 0.9) LU(1e−04, 0.9) LU(1e−04, 0.9) LU(1e−04, 0.9)

L1-Regu. Weight LU(1e−04, 0.9) LU(1e−04, 0.9) LU(1e−04, 0.9) LU(1e−04, 9)

L2-Regu. Weight LU(1e−04, 0.9) LU(1e−04, 0.9) LU(1e−04, 0.9) LU(1e−04, 9)
Dropout LU(0.1, 0.9) - LU(0.1, 0.9) -
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Fig. 2. Balanced Accuracy Comparison
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Fig. 3. DeepFM - 10 Most Important Linear Features

5 Results & Discussion

Performance. With a median balanced accuracy of 0.589, DeepFM has the
highest performance of all models (see fig. 2). It is slightly better than DNN
(accmed = 0.582) and FM (accmed = 0.581). DeepFM improves over the DNN
thanks to the added FM model. Solely the linear model is unable to achieve
similar performance. This shows the effectiveness of the FM approach and its
capability to learn interactions among many features. In addition, we explored
meta-embeddings, which combine volume measurements of larger brain regions
into a single embedding vector. We only combine brain volume features as those
are the largest feature group and combining them by brain region is medically
reasonable. Our results demonstrate that this leads to a slightly higher balanced
accuracy of 0.596, but most importantly lowers the variance across folds (fig. 2,
right). By combining larger brain regions, the pairwise interaction space shrinks
and the model is less prone to overfitting.

Feature Importance. We get a direct measure of feature importance by looking at
the weights of the linear part of the DeepFM in (1). Figure 3 displays the weights
of the ten most important features for each fold (sorted by their mean weight
over all folds). Because weights are class-specific, we obtain three rankings. As
the top ten features for the AD (CN) model account for 42% (39.8%) of the total
feature importance, we only analyze those in more detail.
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The first and third most important features for AD are the volumes of Hip-
pocampus and Amygdala, both lie in the temporal lobe, a region typically af-
fected by AD [23,27]. The thickness measures in the top features for AD lie in
the parietal and temporal lobe. Both regions were previously shown to exhibit
atrophy in AD patients [2,24]. The volume of the lateral ventricle is dependent
on the atrophy of the brain regions surrounding it. Two variants of the genetic
marker ApoE, e3-e3 and e4-e4, are important for prediction, which is reassuring
because it is an important marker for AD [19,21]. Being not Hispanic, or not
Latino has a slightly positive influence on the AD risk, which is supported by
previous studies [25,26].

It is striking that the learned impact of all the top features for AD and CN
prediction is in line with medical findings. Consequently, the weights’ signs for
the prediction of CN have the opposite sign compared to those for AD. For
MCI, the picture is less clear. As MCI patients are part of a complex transition,
this group is more heterogeneous. While for AD and CN a few very important
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features are sufficient for prediction, for MCI, the top ten features only make up
for 23.7% of the total feature importance and learned weights are incoherent.

Feature Interactions. The second information that is easily accessible is the im-
portance of feature interactions (see fig. 4). This gives DeepFM an advantage
over DNNs, for which extracting information about learned interactions is chal-
lenging. The information of a feature in an interaction is interconnected with
their own and their partners embedding matrix. We extract the importance in-
formation by running the model with the test data and computing the relative
importance of each single interaction and the output of the rest of the model for
every patient. We can then plot the importance value for each interaction as the
mean over all patients. The 109 features per patient accumulate to 5886 pairwise
interactions. Thus, a single interaction has a relatively small contribution.

AD affects multiple brain regions at every stage of disease progression. The
difficulty of pinpointing AD to a specific region becomes apparent for the pairwise
interactions, where multiple brain regions interact. Numerous interactions con-
sist of regions in or near the Hippocampus. Some genetic markers also appear.
The interactions between them and different brain regions are an interesting
finding that needs to be further explored in the future. However, in this setup
the brain is scattered in many volumes and small differences or measurement
errors become much more pronounced. This makes the interpretation difficult.

At this point, the advantage of the embedding layer comes into play. While
interactions between single small brain regions are hard to interpret, the embed-
ding layer can be used to embed larger regions into a so-called meta embedding.
The interactions between these larger regions give a better picture of impor-
tant regions (see fig. 5). Small deviations have less influence and overfitting is
reduced. Using meta embedding, DeepFM is especially utilizing interactions be-
tween ApoE and temporal or frontal lobe volumes. Comparing the most impor-
tant feature interactions to distinguish AD from the rest, with the ones used for
CN patients, it becomes even clearer that DeepFM learns medically explainable
features. The CN-model focuses especially on the temporal lobe and cerebral
ventricle. Both regions are known to be affected early on in the disease [27,14].

6 Conclusion

We proposed a Deep Factorization Machine model that combines the strength
of deep neural networks to implicitly learn feature interactions and the ease
of interpretability of a linear model. Our experiments on Alzheimer’s Disease
diagnosis demonstrated that the proposed architecture is able accurately classify
patients than competing methods and can reveal valuable insights about the
interaction between biomarkers.

Acknowledgements. This research was supported by the Bavarian State Min-
istry of Science and the Arts and coordinated by the Bavarian Research Institute
for Digital Transformation, and the Federal Ministry of Education and Research
in the call for Computational Life Sciences (DeepMentia, 031L0200A).



Alzheimer’s Disease Diagnosis via Deep Factorization Machine Models 9

References
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