
The role of MRI physics in brain segmentation
CNNs: achieving acquisition invariance and

instructive uncertainties

Pedro Borges1,2, Richard Shaw1,2, Thomas Varsavsky1,2, Kerstin Klaser2

David Thomas3, Ivana Drobnjak1, Sebastien Ourselin2, and M Jorge Cardoso2

1Department of Medical Physics and Biomedical Engineering, UCL, UK
2School of Biomedical Engineering and Imaging Sciences, KCL, UK

3Dementia Research Centre, UCL, UK

Abstract. Being able to adequately process and combine data arising
from different sites is crucial in neuroimaging, but is difficult, owing to
site, sequence and acquisition-parameter dependent biases. It is impor-
tant therefore to design algorithms that are not only robust to images
of differing contrasts, but also be able to generalise well to unseen ones,
with a quantifiable measure of uncertainty. In this paper we demon-
strate the efficacy of a physics-informed, uncertainty-aware, segmenta-
tion network that employs augmentation-time MR simulations and ho-
mogeneous batch feature stratification to achieve acquisition invariance.
We show that the proposed approach also accurately extrapolates to
out-of-distribution sequence samples, providing well calibrated volumet-
ric bounds on these. We demonstrate a significant improvement in terms
of coefficients of variation, backed by uncertainty based volumetric vali-
dation.

1 Introduction

Magnetic Resonance Imaging (MRI) is one of the most widespread neuroimaging
techniques owing to its excellent soft tissue contrast, boasting great versatility
in highlighting different regions and pathologies by means of sequence selection.
As a consequence, a significant body of work has emerged developing accurate
processing algorithms for MR images that may arise from different sites and
acquisition sequence parameters. There are those works that focus on achiev-
ing algorithms that can generalise well to all contrasts. Traditional and largely
widespread techniques include probabilistic generative models [2] and multi-atlas
fusion methods [17]. However, the former has strong assumptions on label in-
tensity distributions, and the latter is predicated on lengthy processing times
due to its dependence on image registration. Recent works using convolutional
neural networks (CNNs), such as Billot et al. [3], tackle contrast agnosticism
by employing a Bayesian generative segmentation model that synthesises im-
ages containing multiple different contrasts. Jog et al. [12] devise an approach
by which networks can be made to generalise to unseen contrasts by predicting
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pulse sequence parameters from such images, and simulating images of that con-
trast by using labelled multiparametric map datasets. Pham et al. [16] employ
an iterative approach involving a dual segmentation-synthesis model, whereby
images of unseen contrasts are segmented, used to train a synthesis network that
in turn is used to generate new images of the unseen contrast from the labels in
the original training set. It is important to note that, while these methods are
able to segment data from unseen sites with some degree of accuracy, they do
not model the interaction between acquisition parameters and the underlying
anatomy explicitly - they segment what they see and not the true anatomy.

This leads to those methods that seek to harmonise measurements across sites
by directly accounting for such covariates as scanner and site bias, and sequence
contrast variabilities, e.g. ComBat [13] is a Bayesian framework designed to ac-
count for experimental variabilities that has been applied to cortical thickness
harmonisation [7]. These classes of techniques, however, operate directly on ex-
tracted volumetric measurements and not on the images. Harmonisation has also
been tackled with CycleGANs [20] [19] and domain adaptation approaches [5].

Recent work [4] proposed a means to directly introduce the physics of the MR
acquisition process directly into deep learning networks in combination with pre-
generated synthetic MR images based on multi-parametric MR maps (MPMs).
This work achieves some agnosticism to the underlying physics by demonstrating
that generated segmentations are more consistent volumetrically. This method,
however, does not enforce volumetric consistency across contrasts, and has not
been show to extrapolate to out of distribution sequence parameters.

Changes in MRI acquisition parameters alter the tissue contrast, thus impact-
ing the algorithmic ability to accurately segment images; this can be modeled
via uncertainty estimation. Here, we propose to model both epistemic (ability of
the model to know) and aleatoric (unknowns of the data) uncertainties. Building
on existing work [4], we also introduce a new training approach and consistency
loss across realisations of MRI contrasts, allowing the model to appropriately
disentangle the anatomical phenotype and the MRI physics, and extrapolate to
unseen contrasts without sacrificing segmentation quality.

2 Methods

Borges et al. [4] proposed that a network could be made resilient to changes
in the physics parameters, and therefore be able to appropriately segment data
produced by different sequences. This was achieved by generating simulated
data, and passing this imaging data and associated MRI parameters to a CNN.
In order to train against a ”Physics Gold Standard” (PGS), i.e. a true model of
the anatomy that is not influenced by the choice of acquisition parameters, the
authors used a Gaussian Mixture Model of literature sourced tissue parameters
for grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on
their quantitative MPMs. We build on this work and improve the algorithmic
robustness, ameliorating image quality, segmentation volume consistency, and
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Fig. 1. The training pipeline with proposed new additions of single subject batch strat-
ification and accompanying L2 feature maps loss, and training time image simulation.

validating within and out of distribution samples paired with uncertainty derived
errors.

2.1 Network architecture

In Borges et al. [4], the injection of the physics parameters into the network is
done via the inclusion of two fully connected layers whose output is tiled and
concatenated to the ante-penultimate convolutional layer output. We adopt a
similar strategy, but take the added step of also tiling this output to an earlier
region of the network, immediately preceding the first down-sampling layer. We
argue that knowledge of the physics is potentially valuable information in the
encoding portion of the network, and that this allows it to better disentangle
the physics parameters and the subject’s phenotype.

We moved to adopt the nn-UNet architecture [10]. All networks were trained
with batch size 4, on 3D patches of size 1283 sampled from the simulated volumes.
Networks were trained with a learning rate of 10−4 until convergence, where
convergence is defined as 7 epochs elapsing without an improvement in validation
metrics, Dice score combined with coefficient of variation (CoV). We made use
of two main frameworks for this work, TorchIO [15], and MONAI [1].

As the proposed method requires multi-parametric data to train the model,
a more scarce resource in large numbers, a dataset comprised of 18 subjects were
used for training, four for validation, and five for inference/ testing.

2.2 Stratification and batch homogeneity

We seek to further enforce volumetric consistencies vis-à-vis same-subject real-
isations generated using different sequence parameters. We therefore propose a
batch stratification approach where each batch contains multiple realisations of
images from a single subject. This allows for the addition of a stratification loss
over the batch features of the penultimate layer of our network, which acts in
addition to the standard cross-entropy segmentation loss. As the segmentation
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ground truths remain consistent across same subject simulations (because the
underlying anatomy is unchanging), if a given batch contains multiple simula-
tions from a single subject (and same patch location for patch-based training
networks), then the features maps at the end of the network should also be con-
sistent across simulations. This is enforced by introducing an L2 loss over all
the final feature maps for each batch. The inclusion of the physics parameters
should make this tenable, as it allows for the network to learn to disentangle the
anatomical phenotype and the MRI-physics related appearance.

2.3 Casting simulation as an augmentation layer

We adopt the same static equation multi-parametric map based simulation ap-
proach as Jog et al. [11], focusing on MPRAGE and SPGR sequences. The SPGR
equation describing the signal bS per voxel, x is:

bS(x) = GSPD(x)sinθ
1− e−

TR
T1(x)

1− cos θe
− TR
T1(x)

e
− TE
T∗2 (x) , (1)

where GS is the scanner gain, TR the repetition time, T1 the longitudinal relax-
ation time, TE the echo time, and T ∗

2 the transverse relaxation time.
Similarly, for MPRAGE:

bM (x) = GSPD(x)

(
1− 2e

−TI
T1(x)

1 + e
−(TI+TD+τ)

T1(x)

)
, (2)

where TD the delay time, and τ the slice imaging time.
Unlike in [4], where simulated volumes are all generated prior to network

training, we implemented the static equation simulation layer as an augmenta-
tion layer. Such a layer takes as input a 4D multi-parametric map, a protocol
type, and a range of relevant parameters to randomly sample from, producing N
(batch size) simulated volumes. This layer-based batch approach is compatible
with our posed stratification model, as all generated volumes per batch belong
to the same subject, permitting the utilisation of the within-batch feature con-
sistency loss. The full training pipeline is depicted in Fig. 1.

2.4 Uncertainty modelling

We opt to incorporate uncertainty modelling in our framework to obtain vol-
umetric bounds on our segmentations. We model the aleatoric uncertainty via
explicit loss attenuation [14]. We modify our network architecture to include an
additional convolutional block that branches off the final upsampling layer. This
branch models the aleatoric uncertainty, σW

Het(x). This modifies the cross-entropy
loss function accordingly:

x̂i,t = fWi + εt, εt ∼ N (0, (σW
i )2) (3)

L =
∑
i

log
1

T

∑
t

ci(−x̂i,t,c + log
∑
c′

ex̂i,t,c′ ) (4)



Title Suppressed Due to Excessive Length 5

Where x̂i,t are the task logits (fWi ) summed with a noise sample of standard de-
viation equal to the predicted σW

i per voxel; T denotes the number of stochastic
passes per input, and σW is defined for every voxel, per class, c. This allows for
the easy extraction of volumetric bounds by repeatedly sampling from additive
logit noise distributions to produce new segmentations.

The epistemic uncertainty is modelled using test-time Monte Carlo sampling
via dropout. Dropout is commonly used as a regularisation technique [18], but
also allows for the approximate Bayesian posterior sampling of segmentations
by maintaining the random neuron switching at test-time [8]. We set a dropout
level of 0.5 in all layers except for the input layer, where it is set to 0.05.

3 Experiments

3.1 Data

We make use of a 27 subject multi-parametric early onset Alzheimer dataset, the
same as in [4], for the purpose of simulating images which are used for training,
validating, and testing of our models, all of which are registered to MNI space
rigidly. The images contain maps of the longitudinal and effective transverse
magnetisation relaxation, R1 and R∗

2, proton density, PD, and magnetisation
transfer, MT. The details concerning quantitative map creation can be found
in [9]. The static equation models we employ feature T1 (inverse of R1), T ∗

2

(inverse of R∗
2), and PD.

3.2 Simulation sequence details

To allow for direct comparability, we limited the ranges of the relevant param-
eters for simulated images at training time to those stipulated in the original
work, i.e. inversion time (TI) = [600-1200] ms for MPRAGE, repetition time
(TR) = [15-100] ms, echo time (TE) = [4-10] ms, and flip angle (FA) = [15-75]
degrees for SPGR. For each subject, a single ”Physics Gold Standard” (PGS)
segmentation was used across the associated synthesized images, generated using
the same process and literature values as in the original work [4].

4 Annealing study: Robustness and quality analysis

To ascertain the contributions of the two main additions to the underlying
method, we carry out an annealing study, whereby we analyse the incremen-
tal performance increases in terms of volume consistency and Dice score, with
the addition of each change. We begin with a complete physics-agnostic baseline,
i.e. a standard 3D nn-UNet trained with pre-generated data (Baseline), followed
by the original physics method (Phys-Base), followed by Phys-Base with the
addition of batch stratification (Phys-Strat), followed lastly by Phys-Strat with
the addition of the simulation augmentation scheme (Phys-Strat-Aug).
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Table 1. Mean dice scores for Baseline, Phys-Base, Phys-Strat, and Phys-Strat-Aug
on segmentation task, across inference subjects. All dice scores are estimated against a
Physics Gold Standard. Standard deviations quoted in brackets. Bold values represent
statistically best performances.

Experiments
Sequence Dice Scores

MPRAGE SPGR
GM WM GM WM

IoD OoD IoD OoD IoD OoD IoD OoD

Baseline
0.966 0.956 0.953 0.934 0.878 0.872 0.893 0.873

(0.005) (0.006) (0.002) (0.002) (0.021) (0.008) (0.023) (0.011)

Phys-Base
0.971 0.964 0.964 0.959 0.911 0.872 0.912 0.880
(0.007) (0.009) (0.008) (0.011) (0.020) (0.050) (0.021) (0.092)

Phys-Strat
0.970 0.969 0.958 0.957 0.929 0.911 0.922 0.894
(0.005) (0.005) (0.004) (0.005) (0.015) (0.011) (0.021) (0.040)

Phys-Strat-Aug
0.971 0.971 0.962 0.960 0.930 0.913 0.921 0.899
(0.004) (0.005) (0.003) (0.004) (0.016) (0.019) (0.015) (0.019)

Table 2. Coefficients of variation (CoV) for Baseline, Phys-Base, Phys-Strat, and Phys-
Strat-Aug on segmentation task, averaged across test subjects. Standard deviations
quoted in brackets. Bold values represent statistically best performances.

Experiments
Sequence CoVs (x103)

MPRAGE SPGR
GM WM GM WM

IoD OoD IoD OoD IoD OoD IoD OoD

Baseline
6.39 22.50 14.94 51.12 61.91 170.10 32.57 158.93

(0.87) (4.08) (1.71) (7.11) (7.61) (31.32) (11.98) (16.83)

Phys-Base
2.72 14.67 3.28 28.10 77.22 127.22 20.77 264.80

(2.12) (7.30) (2.01) (3.98) (34.44) (18.61) (9.35) (8.52)

Phys-Strat
0.71 6.15 0.53 3.67 21.83 59.78 8.60 59.19

(0.23) (1.51) (0.25) (1.34) (0.83) (13.31) (0.64) (11.25)

Phys-Strat-Aug
0.42 4.74 0.51 3.65 15.76 28.88 7.12 44.78
(0.22) (1.30) (0.23) (0.62) (1.18) (9.74) (0.45) (4.22)

We extend our volumetric consistency analysis by analysing out of distribu-
tion (OoD) samples. In this instance they are defined as simulated images whose
sequence parameters lie outside of the training range. This not only results in
images of unfamiliar contrasts, but also unseen parameters that are fed into the
physics branch of the network. If our method has truly attained a measure of
sequence invariance then it should be expected that both segmentation quality
and volume consistency are maintained as the network should be able to ex-
trapolate from the provided values. For MPRAGE, the OoD range is extended
to [100-2000] ms, while for SPGR, the TR is extended to [10-200] ms, TE is
extended to [2-20] ms, and FA is extended to [5-90] degrees.

Table 1 and Table 2 show Dice and CoV performances, respectively. We carry
out signed-rank Wilcoxon tests to test for statistically significant improvements,
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Fig. 2. Baseline and Phys-Strat-Aug comparisons. Comparing out-of-distribution
MPRAGE (Top two rows) and SPGR (Bottom two rows) GM segmentations from
the proposed and baseline methods. Blue circles highlight examples of significant gyrus
variability. Orange circles denote regions of segmentation differences between protocols.

and bold the best model (p-value < 0.01). Tests are carried out on CoV and Dice
scores independently of each other. In instances where models may outperform
baselines but are not statistically significantly different from each other, we bold
both. We verify an incremental gain in CoV and Dice with each added feature,
the most pronounced of which results from the addition of the stratification loss,
in terms of both in and out of distribution CoVs. This is expected, as directly
optimising for consistency across realisations of the same subject should more
strongly enforce volume consistency, enhancing the physics invariance.

Phys-Strat-Aug boasts the best performance overall, significantly outper-
forming both Baseline and Phys-Base with regards to CoV. Compared to Phys-
Strat, the differences are not always statistically better for MPRAGE, but are
so for SPGR. With more parameters at play, an augmentation scheme should
become more relevant, as sampling from the parameter space should lead to a
greater extrapolating ability, as the network is no longer constrained to learn
from a more discrete training set, and will experience more varied realisations.

Fig. 2 shows some qualitative results, in and out of distribution segmentation
comparisons between Baseline and Phys-Strat-Aug, to convey the consistency
the latter is able to achieve without compromising segmentation quality.

4.1 Uncertainty measures and volumetric bounds

Given Phys-Strat-Aug’s superior performance, we train only two epistemic un-
certainty models, and two aleatoric uncertainty models with this pipeline, one
of each for this pipeline and a complete baseline.

At test-time we extract 50 aleatoric volume samples, and 50 epistemic volume
samples for each of the networks, for both in and out of distribution simulated
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images. We verify that the aleatoric samples do not contribute significantly to
the volume variance in comparison to its epistemic counterpart, (an observation
that was also been verified in [6]) and therefore omit it in our volumetric analysis.

Fig. 3 showcases white matter volume variations for MPRAGE and SPGR se-
quences, for the extended out of distribution parameter ranges, for Baseline and
Phys-Strat-Aug experiments, for a single subject. For the SPGR plot, we order
the points based on volumetric consistency for each experiment, thus highlight-
ing outliers. In both instances we observe a much greater consistency in volume
for Phys-Strat-Aug, itself a reflection of the aforementioned CoV results. Using
the calibrated volumetric method described in [6] allows us to calculate vol-
ume percentiles for each set of dropout samples, and the errors represent the
volumetric interquartile range (IQR).

The errors for the baseline do not vary in any statistically significant manner,
for either sequence or tissue, independent of any volume deviation. It is a different
matter for Phys-Strat-Aug, however. Specifically, for MPRAGE, we note that
uncertainties are consistently larger for Phys-Strat-Aug compared to baseline,
and that furthermore, Phys-Aug-Strat segmentations boast larger uncertainties
for out of distribution samples. This can perhaps be explained by the additional
level of uncertainty introduced by the physics, and how the presence of a physics
parameter outside of the “known” further exacerbates this effect.

For SPGR, all the apparent outliers for Phys-Strat-Aug have significantly
larger associated errors, while this is not the case for the Baseline. We observe
that most outliers correspond to out of distribution samples boasting very low flip
angles (< 10◦, highlighted in black in the figure). Such images will be significantly
less T1-weighted, and therefore be less familiar to the models, resulting in poorer
segmentation quality, so it is reassuring that the physics-informed network’s
uncertainty around these samples is larger.

5 Discussion and Conclusions

In this work we demonstrated that with some well justified modifications to the
training pipeline, a physics-informed network can achieve extremely constrained
tissue segmentations across a wide range of contrasts, across all tissue types and
investigated sequences; thus strengthening its harmonisation capabilities.

Furthermore, we also showed that it can suitably generalise to unseen do-
mains, while maintaining volume consistency without compromising segmen-
tation quality, and is validated by accurately quantifying the volumetric un-
certainty. The uncertainty estimates further suggest that the physics knowledge
grants the model an additional level of safety, as volumetric uncertainties proved
to be larger for out of distribution parameter generated images.

The method is admittedly limited by those sequences that can be aptly repre-
sented as a static equation, but we argue that at the very least, for the purposes
of contrast agnosticism, a wide enough range of realistic contrasts can be gener-
ated with currently implemented sequences, which should allow for our method
to generalise further. Future work will therefore involve testing of our method
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Fig. 3. Volume consistency for WM for complete baseline and Phys-Strat-Aug, for
example subject. Filled plots/ Error bars correspond to IQR volumes. Left: MPRAGE.
The dashed grey region denotes the TI training time parameter range (600 - 1200 ms).
Right: SPGR. Black points denote samples with FA lower than 10◦ for Phys-Strat-Aug.

on multiple external datasets to ascertain generalisability and the exploration of
techniques that may allow for the modelling of MR artifacts such as movement
and B0 inhomogeneities, to enhance our model’s utility.
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