Skip to main content

Low-Dose CT Denoising Using Pseudo-CT Image Pairs

  • Conference paper
  • First Online:
Book cover Predictive Intelligence in Medicine (PRIME 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12928))

Included in the following conference series:

Abstract

Recently, self-supervised learning methods able to perform image denoising without ground truth labels have been proposed. These methods create low-quality images by adding random or Gaussian noise to images and then train a model for denoising. Ideally, it would be beneficial if one can generate high-quality CT images with only a few training samples via self-supervision. However, the performance of CT denoising is generally limited due to the complexity of CT noise. To address this problem, we propose a novel self-supervised learning-based CT denoising method. In particular, we train pre-train CT denoising and noise models that can predict CT noise from Low-dose CT (LDCT) using available LDCT and Normal-dose CT (NDCT) pairs. For a given test LDCT, we generate Pseudo-LDCT and NDCT pairs using the pre-trained denoising and noise models and then update the parameters of the denoising model using these pairs to remove noise in the test LDCT. To make realistic Pseudo LDCT, we train multiple noise models from individual images and generate the noise using the ensemble of noise models. We evaluate our method on the 2016 AAPM Low-Dose CT Grand Challenge dataset. The proposed ensemble noise models can generate realistic CT noise, and thus our method significantly improves the denoising performance existing denoising models trained by supervised- and self-supervised learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batson, J., Royer, L.: Noise2Self: blind denoising by self-supervision. In: International Conference on Machine Learning, pp. 524–533. PMLR (2019)

    Google Scholar 

  2. Batson, J., Royer, L.: Noise2Self: blind denoising by self-supervision. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019, Proceedings of Machine Learning Research, vol. 97, pp. 524–533. PMLR (2019). http://proceedings.mlr.press/v97/batson19a.html

  3. Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  4. Chen, H., et al.: Low-dose CT via convolutional neural network. Biomed. Opt. Express 8(2), 679–694 (2017)

    Article  Google Scholar 

  5. Chen, Y., et al.: Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means. Phys. Med. Biol. 57(9), 2667 (2012)

    Article  Google Scholar 

  6. Chen, Y., et al.: Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys. Med. Biol. 58(16), 5803 (2013)

    Article  Google Scholar 

  7. Feruglio, P.F., Vinegoni, C., Gros, J., Sbarbati, A., Weissleder, R.: Block matching 3D random noise filtering for absorption optical projection tomography. Phys. Med. Biol. 55(18), 5401 (2010)

    Article  Google Scholar 

  8. Hasan, A.M., Mohebbian, M.R., Wahid, K.A., Babyn, P.: Hybrid collaborative Noise2Noise denoiser for low-dose CT images. IEEE Trans. Radiat. Plasma Med. Sci. 5, 235–244 (2020)

    Article  Google Scholar 

  9. Hendriksen, A.A., Pelt, D.M., Batenburg, K.J.: Noise2Inverse: self-supervised deep convolutional denoising for tomography. IEEE Trans. Comput. Imaging 6, 1320–1335 (2020)

    Article  MathSciNet  Google Scholar 

  10. Kang, D., et al.: Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm. In: Medical Imaging 2013: Image Processing, vol. 8669, p. 86692G. International Society for Optics and Photonics (2013)

    Google Scholar 

  11. Krull, A., Buchholz, T.O., Jug, F.: Noise2Void-learning denoising from single noisy images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2019)

    Google Scholar 

  12. Lee, S., Lee, D., Cho, D., Kim, J., Kim, T.H.: Restore from restored: single image denoising with pseudo clean image (2020)

    Google Scholar 

  13. Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. In: International Conference on Machine Learning, pp. 2965–2974. PMLR (2018)

    Google Scholar 

  14. Li, Z., et al.: Adaptive nonlocal means filtering based on local noise level for CT denoising. Med. Phys. 41(1), 011908 (2014)

    Google Scholar 

  15. Ma, J., et al.: Low-dose computed tomography image restoration using previous normal-dose scan. Med. Phys. 38(10), 5713–5731 (2011)

    Article  Google Scholar 

  16. McCollough, C.: TU-FG-207A-04: overview of the low dose CT grand challenge. Med. Phys. 43(6Part35), 3759–3760 (2016)

    Google Scholar 

  17. Nishio, M., et al.: Convolutional auto-encoder for image denoising of ultra-low-dose CT. Heliyon 3(8), e00393 (2017)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017)

    Article  Google Scholar 

  20. Won, D.K., An, S., Park, S.H., Ye, D.H.: Low-dose CT denoising using octave convolution with high and low frequency bands. In: Rekik, I., Adeli, E., Park, S.H., Valdés Hernández, M.C. (eds.) PRIME 2020. LNCS, vol. 12329, pp. 68–78. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59354-4_7

    Chapter  Google Scholar 

  21. Yang, Q., Yan, P., Kalra, M.K., Wang, G.: CT image denoising with perceptive deep neural networks. arXiv preprint arXiv:1702.07019 (2017)

  22. Zhang, H., Zhang, L., Sun, Y., Zhang, J.: Projection domain denoising method based on dictionary learning for low-dose CT image reconstruction. J. Xray Sci. Technol. 23(5), 567–578 (2015)

    Google Scholar 

  23. Zhong, A., Li, B., Luo, N., Xu, Y., Zhou, L., Zhen, X.: Image restoration for low-dose CT via transfer learning and residual network. IEEE Access 8, 112078–112091 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant of the medical device technology development program funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) (20006006), and the grant of the High-Potential Individuals Global Training Program (2019-0-01557) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hyun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Won, D., Jung, E., An, S., Chikontwe, P., Park, S.H. (2021). Low-Dose CT Denoising Using Pseudo-CT Image Pairs. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds) Predictive Intelligence in Medicine. PRIME 2021. Lecture Notes in Computer Science(), vol 12928. Springer, Cham. https://doi.org/10.1007/978-3-030-87602-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87602-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87601-2

  • Online ISBN: 978-3-030-87602-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics