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Abstract. Using publicly available data to determine the performance
of methodological contributions is important as it facilitates reproducibil-
ity and allows scrutiny of the published results. In lung nodule classifi-
cation, for example, many works report results on the publicly available
LIDC dataset. In theory, this should allow a direct comparison of the per-
formance of proposed methods and assess the impact of individual contri-
butions. When analyzing seven recent works, however, we find that each
employs a different data selection process, leading to largely varying total
number of samples and ratios between benign and malignant cases. As
each subset will have different characteristics with varying difficulty for
classification, a direct comparison between the proposed methods is thus
not always possible, nor fair. We study the particular effect of truthing
when aggregating labels from multiple experts. We show that specific
choices can have severe impact on the data distribution where it may be
possible to achieve superior performance on one sample distribution but
not on another. While we show that we can further improve on the state-
of-the-art on one sample selection, we also find that on a more challeng-
ing sample selection, on the same database, the more advanced models
underperform with respect to very simple baseline methods, highlighting
that the selected data distribution may play an even more important role
than the model architecture. This raises concerns about the validity of
claimed methodological contributions. We believe the community should
be aware of these pitfalls and make recommendations on how these can
be avoided in future work.

1 Introduction

Lung nodule characterization is the most difficult step in the pipeline of lung
cancer diagnosis according to radiologists, which can be observed by a great
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inter-observer disagreement on the task [7,12]. A lung nodule is normally char-
acterized with respect to texture, spiculation, lobulation, and its morphological
appearance on a CT scan, and eventually it must be classified as either benign
or malignant for patient management. The Lung imaging Reporting And Data
System (Lung-RADS) [9] is a protocol that defines explicit guidelines for nodule
management and follow up planning, and classifies pulmonary nodules in six
categories, each of which has its own suggested follow up. Lung-RADS also in-
tegrates the PanCan Model [11], which provides a malignancy probability based
on the morphology of a nodule and additional patient information. Certain di-
agnosis can only be made through biopsy, which, however, is invasive and not
always feasible to have access to. While determining the malignancy of a nodule
from its appearance on a CT scan is not a fail-proof method, it is still a very
useful step of the lung cancer detection pipeline. It can have very important
value to clinicians in conjunction with patient history and demographics.

Several deep learning methods have been proposed for automated nodule
classification from CT. The publicly available Lung Image Database Consor-
tium and Image Database Resource Initiative (LIDC) database [2,10] has been
in the core of the majority of such efforts. The LIDC does not primarily contain
pathology confirmed ground truths (besides a very small subset of cases), but
rather radiologists’ annotations. Nevertheless, it is still heavily used by the re-
search community for the task of lung nodule classification. Interestingly, there
are various design choices regarding sample selection that need to be considered,
which can have severe impact on the reported results.

The contributions of this paper can be summarized as follows: 1) We an-
alyze several published works reporting results on LIDC nodule classification
and examine the different assumptions such as annotation aggregations meth-
ods, removal of cases based on clinical guidelines, and data augmentation, which
all can affect the resulting sample selection process; 2) Through an extensive
experimental analysis, we show that the selected data distribution can affect
the difficulty of the task and may play an even more important role than the
model architecture; 3) We demonstrate that reproducibility and direct model
comparison is virtually impossible to achieve and provide suggestions towards
making this feasible in future work, while also making our data selection publicly
available to promote reproducibility. We illustrate the pitfalls of sample selec-
tion with a novel methodological approach of curriculum by smoothing for lung
nodule classification. Our findings and insights will be of use to the community
and aid in the design of future approaches for lung nodule classification.

2 State-of-the-art in Lung Nodule Classification

The LIDC dataset contains more than 1000 scans. Each scan was reviewed by
four radiologists who pinpointed lesion locations and assigned a variety of anno-
tations including malignancy. For every nodule, each radiologist had to assign
a malignancy rating from 1 (most likely benign) to 5 (most likely malignant).
Nodules annotated with 3 were regarded as indeterminate.



The Pitfalls of Sample Selection in Lung Nodule Classification 3

Median: Benign, 
Mean: Benign

Median: Indeterm inate, 
Mean: Indeterm inate

Median: Malignant , 
Mean: Malignant

Median: Benign, 
Mean: Indeterm inate

Median: Indeterm inate, 
Mean: Benign

Median: Indeterm inate, 
Mean: Malignant

Median: Malignant , 
Mean: Indeterm inate

Fig. 1: Lung nodule examples from the LIDC. Top row: Nodules that have the
same consensus regardless of the aggregation method used. Bottom row: Nodules
that have different consensus depending on the aggregation method.

There are a number of preprocessing and data curation steps which are con-
sidered fixed when using the LIDC and almost all recent deep learning papers
follow them. These include (1) retaining only nodules that have been annotated
by at least three radiologists and (2) discarding nodules annotated as indetermi-
nate. Subsequently, for each nodule a consensus annotation is extracted from the
individual annotations through some form of aggregation or truthing (typically
using mean, median, or majority voting). Example nodules from the LIDC with
different consensus/aggregation combinations can be seen in Figure 1. Given
these relatively straightforward steps, it may be surprising to find that every
paper we studied reports largely varying numbers for benign and malignant
nodules and overall cases (see Table 1). Most studies report that they follow
a procedure similar to previous work, however, rarely provide the exact details
about either the sample selection process or the final dataset (e.g. by publishing
a list of scan series IDs). Beside the differences in absolute numbers of benign
and malignant cases, the characteristics of the underlying data distribution may
change significantly. One of the most important characteristics is the size of a
nodule (quantified by its diameter), as it plays an essential role in malignancy
classification. Another discrepancy arises from the decision to remove cases that
have a slice thickness > 2.5mm, which is based on clinical guidelines [5]. Im-
ages with thick slices are deemed unsuitable for lung cancer screening. This step
was first suggested in the LUNA16 nodule detection challenge [15] and has also
been adopted by other studies [20]. One of the few works that release their
pre-processed data is by Al-Shabi et al. [1].
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Table 1: Overview of previous work for lung nodule classification on LIDC-IDRI
in terms of nodule counts and performance. Despite all papers using the same
publicly available dataset, final numbers of benign and malignant cases vary
largely making a direct comparison of the methods’ performance impossible.
Method Benign count Malignant count Accuracy (%)

Local-Global [1] 442 406 89.75
DeepLung [20] 554 450 90.44
Lightweight multi-CNN [14] 857 448 93.18
Interpretable hierarchical CNN [16] 3212 1040 84.20
NoduleX [3] 394 270 93.20
Multi-crop CNN [17] 880 495 87.14
Multi-task w/ margin ranking loss [8] 972 450 93.50

Here, we attempt to draw a direct comparison to their work with the dataset
we have extracted from pre-processing LIDC (see Figure 2). Something like this
is not feasible for the other proposed methods which do not publicly release
their sample selection. In this comparison, we want to highlight the important
role that the aggregation method (mean vs median) plays in determining which
samples are labeled as benign and malignant. When median aggregation is used,
we see that a lot more nodules have an indeterminate consensus (i.e. median=3)
and are therefore excluded, resulting in a smaller, more balanced dataset, which
is much easier to separate based on the key characteristic of nodule diameter.
Specifically, median aggregation leads to 442/406 benign/malignant nodules for
[1] and 376/357 benign/malignant in our replicated pipeline, respectively. In con-
trast, mean aggregation results in 653/484 benign/malignant for [1] and 559/451
for us. A factor leading to a discrepancy between the two samples, even when
the same aggregation method is used, is the fact that cases with a slice thick-
ness > 2.5mm have been retained by [1]. These factors make reproducibility and
direct comparison of methods nearly impossible.

3 Methodology

Here we present different methods and approaches, including our attempted
contribution, which we considered for studying the impact of sample selection
on lung nodule classification performance. We used several baselines and state-
of-the-art deep learning approaches.

3.1 Diameter-based baselines

Diameter threshold The first baseline we set is not learning-based but a
rather simplistic one. Specifically, given that the size of a nodule is a primary
factor in determining whether a nodule is malignant or not (i.e. large nodules
are most likely to be regarded by experts as malignant, while small nodules
as benign) we use the provided diameter annotation in LIDC and specify a
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Fig. 2: Data distributions of benign and malignant samples over nodule diam-
eter. (a) Median aggregation from [1], (b) Mean aggregation from [1], (c) Our
median aggregation, (d) Our mean aggregation. Median aggregation produces
fewer nodules in total (i.e. more nodules are classified as indeterminate) for both
cases, and at the same time more balanced datasets.

threshold for classifying nodules into benign and malignant. This baseline is
used as a surrogate to determine the difficulty of the classification, as the overall
size difference between structures may be easily picked up by an image-based
prediction model such as a convolutional neural network (CNN).

Regressed diameter threshold Another baseline that we use is similar to the
previous one but with a CNN that is trained to regress the diameter through
a mean squared error loss. The classification is taking place by applying the
threshold determined from the first baseline on the output of the CNN instead
of the annotation. Again, if this baseline works well, one may conclude that the
task given a specific dataset is not very difficult.

3.2 ShallowNet

We also implement a CNN for malignancy classification (termed ShallowNet),
which is a bare-bones CNN comprising of four convolutional layers with kernels
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of shape 3x3 and ReLU activations, and corresponding max-pooling layers with
kernels of shape 2x2, as well as a fully-connected layer with 1024 neurons at the
end for the classification. This is a deliberately simplistic deep learning baseline
used to compare with more complicated architectures proposed in the literature.

3.3 Local-Global

Since we have access to the sample selection of [1], it makes sense to use the state-
of-the-art method on this distribution. The Local-Global network was proposed
by [1] and consists of two blocks. Each block contains the following sequence: a
residual sub-block [4] followed by a non-local sub-block [19] and a dropout layer.
After the two blocks, there is an average pooling layer and a fully-connected
layer for the classification.

3.4 Curriculum by smoothing

Finally, we propose the use of curriculum by smoothing (CBS) [18], which has
shown promising results on computer vision classification tasks. CBS plays the
role of our attempted methodological contribution on lung nodule classification.
The main idea behind CBS is to apply a Gaussian smoothing kernel to the output
of each convolutional layer of a CNN. We use θ ~ x to denote the convolution
of a kernel θ with an input x. Typically, in a CNN, a convolution operation is
followed by a non-linear activation function as described in Equation 1:

z = activation(θω ~ x) (1)

where θω are the trainable parameters of a convolutional layer. The CBS
formulation is presented in Equation 2:

z = activation(θG ~ (θω ~ x)) (2)

where θG is a predefined Gaussian kernel. The Gaussian kernel is deterministic
and is not trained. During the early stages of training it has an initial standard
deviation σ, which is annealed as training progresses. This way, high-frequency
information is suppressed in the early training steps of the CNN and is only
considered at later stages of the training process.

It is important to note that while we introduce CBS here as an approach that
could enhance the performance of ShallowNet or Local-Global for the task of lung
nodule classification, our purpose is not to propose a novel model architecture
but rather to explore whether the selected sample distribution can play a more
important role than the model architecture and highlight the pitfalls that occur
in such a scenario.

4 Experimental Analysis

Following from the differences in the data distributions, we move to comparing
some baseline models, as well as the proposed method from [1]. In this section
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we focus on two distributions to demonstrate the impact of sample selection and
understand whether performance differences stem from the data or the methods.
Specifically, we use the data produced with median aggregation (Figure 2a) from
[1] (henceforth denoted as D1), as this is the one the authors report results for,
and mean aggregation (Figure 2d) for our data (denoted as D2). We do not
consider mean aggregation to be superior to median, but instead we want to
study the differences in performance that are caused by this specific choice of
truthing. Median aggregation leads to the two classes being more easily separated
based on nodule diameter (Figures 2a,2c), even though 5-10 mm is considered
the most difficult area to separate malignant from benign nodules. In both D1

and D2, a nodule is considered benign when the consensus has a value lower
than 3 and malignant when it has a value greater than 3.

CT scans with a slice thickness greater than 2.5mm are removed according
to clinical guidelines [5] and every remaining scan is resampled to 1mm isotropic
resolution across all three dimensions and one 32x32 mm patch is extracted
along each orthogonal plane at each nodule location. The final classification
result for each nodule occurs from the averaging of the individual classification
of each of its three planes. Some experiments include offline data augmentation
(i.e. the size of the dataset itself is increased six-fold through the addition of
nodule augmentations); these augmentations are the ones suggested by [1] and
include rotations, horizontal flips and Gaussian smoothing. For the proposed
methodological contribution of employing CBS we choose 3x3 sized kernels, with
an initial standard deviation σ = 1 of the Gaussian smoothing kernel and an
annealing of 0.5 every 5 epochs based on guidelines provided by the authors of
[18] and our own validation performance. All models are evaluated using 10-fold
cross validation and the reported results are the average of the performance
across the 10 folds. The networks are trained using the Adam optimizer [6] with
learning rate 10−3 and binary cross-entropy loss for 50 epochs and a batch size of
256 samples. We also deploy early stopping to avoid overfitting. All experiments
were conducted using PyTorch [13].

The results of the comparison can be found on Table 2. First, we show that
even separating the samples based on nodule diameter (i.e. thresholding) can
achieve a quite high accuracy (85.02% for D1 and 83.46% for D2). In each case,
we select the threshold that maximizes training accuracy. The threshold for the
two cases is quite different (7.2mm for D1 and 11.5mm for D2) because of the
different aggregation methods used and also because the equivalent diameter (i.
e. the diameter of the sphere having the same volume as the nodule estimated
volume) is the one used in [1]. Then we use a shallow CNN (ShallowNet) to
regress the nodule diameter and use a threshold (7.7mm for D1 and 11mm for
D2) on that, in order to classify the nodule. If we focus on D1, we see that
a ShallowNet trained directly on malignancy can initially just outperform the
diameter-based baselines (85.74%) but its performance gets better progressively
when we use either CBS (86.80%) or offline augmentations (89.74%) and reaches
up to 90.91% if we use both. We observe the same pattern for Local-Global
[1] which starts from 89.15% when we do not use CBS or augmentations and
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Table 2: Comparison of methods on the different data distribution settings. The
reported results are averaged across the 10 folds. D1 is the data distribution used
in [1], which has occurred from median aggregation, while D2 has been extracted
from the LIDC by us using mean aggregation. We use accuracy (Acc), sensitivity
(Sens) and specificity (Spec) to report the performance of each method and all
the reported values are percentages (%). Even from the baselines, it is evident
that D1 is an easier task to solve than D2. All methods perform better when
augmented with CBS for D1. In D2 all configurations perform similarly to the
diameter baseline, and there is no improvement from progressively increasing
the complexity of the model by adding augmentations and/or CBS.

Method
D1 D2

Acc Sens Spec Acc Sens Spec

Diameter threshold 85.02 90.14 80.31 83.46 69.62 94.63
CNN-regressed diameter threshold 84.43 84.23 84.61 81.58 68.95 91.77

ShallowNet 85.74 77.09 93.67 83.86 74.94 91.05
ShallowNet + CBS 86.80 78.57 94.35 82.77 71.17 92.12
ShallowNet (w/ aug) 89.74 85.96 93.21 84.35 77.38 89.98
ShallowNet (w/ aug) + CBS 90.91 89.40 92.30 82.37 73.61 89.44

Local-Global [1] 89.15 89.16 89.14 82.97 74.72 89.62
Local-Global + CBS 89.26 91.40 86.94 81.98 75.38 87.29
Local-Global (w/ aug) [1] 89.75 90.17 88.17 82.57 79.15 85.33
Local-Global (w/ aug) + CBS 90.91 90.64 91.17 81.88 70.06 91.41

eventually reaches 90.91% when we use both. The progressive gains from CBS
and augmentations that are present in D1, however, are not replicated on D2. All
the methods in that case perform very similar to the diameter-based baselines
with the ShallowNet being the only one that surpasses them marginally in terms
of accuracy (84.35% with augmentations).

5 Discussion

The LIDC dataset has been instrumental for the majority of recent works on
lung nodule classification. Here, we take a critical look at the aspect of sample
selection after discovering inconsistencies in the reported literature. We aimed to
examine different factors that affect the performance of a model and thus the ap-
parent value of its methodological contribution. Starting from the pre-processing
steps that various studies have applied on the LIDC dataset, we observe that a
number of different assumptions during the sample selection process can lead to
very different resulting data distributions (Table 1). Such factors are the choice
of the aggregation method (e.g. median or mean), in order to extract a consensus
from the multiple annotations per nodule, or the removal of certain cases which
are considered as unsuitable for the task due to clinical guidelines.

The aggregation method, in particular, plays a very important role. First, it is
affecting the total number of nodules that are retained, since median aggregation
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leads to more nodules having an indeterminate consensus and consequently be-
ing removed, compared to mean aggregation. It is fair to say that these nodules,
which are retained in the dataset with mean aggregation, are harder examples,
and therefore, the classification task that occurs from mean aggregation is more
difficult. Second, the prevalence of the two classes in the dataset changes sub-
stantially, since median aggregation leads to a more balanced, and potentially
more favorable for classification, dataset.

It is easy to understand that these choices change the nature of the under-
lying data distribution and hence, of the classification task itself. The compar-
ison of the performance of different methods applied on different distributions
is thus complex and makes the objective assessment of the value of method-
ological contributions difficult, which we also demonstrate experimentally. We
initially devise several baselines. The first one is a simple thresholding based on
the nodule diameter annotation. A size-relevant annotation is usually a core part
of a lung nodule dataset, including the LIDC, and therefore this baseline can
be applicable in all future studies. In the second baseline we apply a threshold
on the diameter predictions that have been regressed by a neural network. This
can indicate the degree of bias that a neural network has towards associating
large nodules with malignancy and small ones with a benign nature. Given the
very similar performance of the ShallowNet trained on malignancy prediction
itself with the ShallowNet that is trained to regress the diameter, we understand
that this bias is actually quite severe. It is well documented [11] that the size
of the nodule is an important factor in determining whether a nodule is benign,
but from a clinical perspective there are also other indications such as texture
or spiculation, which do not seem to be picked up by the neural network. The
aforementioned baselines can describe the difficulty of the task, and we suggest
their adaptation by the research community working on lung nodule classifica-
tion. Additionally, we intend to publicly release our sample selection and we urge
the research community to do the same to promote reproducibility.

The core argument of our paper is epitomized when we compare the perfor-
mance of all methods on the two distributions. Overall, we see that on D1, adding
data augmentation or increasing the complexity of the model (i.e. Local-Global
instead of ShallowNet) consistently leads to a distinct increase in performance.
The approach of using CBS during training results in a performance increase on
every single method, outperforming marginally even the state-of-the-art (Local-
Global w/ augmentations) on D1. However, on D2, all methods are bounded by
the diameter threshold baseline and even CBS is not having the impact it did on
D1. This highlights the pitfalls of sample selection which may lead to incorrect
conclusions about the methodological contributions. If we were to report only
results on D1, we may have concluded that CBS is beneficial for lung nodule
classification, and even outperforms previous works.
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6 Conclusion

In this paper we have investigated the effect of sample selection in the context
of lung nodule classification using deep learning. We have investigated different
factors that cause the various published studies to report completely different
number of nodules, and we show experimentally that these factors explicitly af-
fect network performance. We have demonstrated that using progressively more
and more complex methods systematically improves performance on the task, if
and only if the assumptions regarding the data selection process allows for it.
On the other hand, if the data distribution presents a more challenging classi-
fication task, as is the case when mean aggregation for the nodule annotations
is used, then model complexity or data augmentation do not offer any kind of
performance boost compared to even the simplest baseline.
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