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Abstract. In recent years, deep learning based methods have shown
success in essential medical image analysis tasks such as segmentation.
Post-processing and refining the results of segmentation is a common
practice to decrease the misclassifications originating from the segmen-
tation network. In addition to widely used methods like Conditional Ran-
dom Fields (CRFs) which focus on the structure of the segmented vol-
ume/area, a graph-based recent approach makes use of certain and uncer-
tain points in a graph and refines the segmentation according to a small
graph convolutional network (GCN). However, there are two drawbacks
of the approach: most of the edges in the graph are assigned randomly
and the GCN is trained independently from the segmentation network.
To address these issues, we define a new neighbor-selection mechanism
according to feature distances and combine the two networks in the train-
ing procedure. According to the experimental results on pancreas seg-
mentation from Computed Tomography (CT) images, we demonstrate
improvement in the quantitative measures. Also, examining the dynamic
neighbors created by our method, edges between semantically similar
image parts are observed. The proposed method also shows qualitative
enhancements in the segmentation maps, as demonstrated in the visual
results.

Keywords: segmentation · graph neural networks · refinement.

1 Introduction

Deep convolutional neural networks (CNN) have proven to be powerful for com-
puter vision tasks including classification, segmentation, and retrieval [1]. Con-
sidering the time spent on the manual segmentation by the medical experts for
making quantitative measurements, medical image segmentation by CNNs at-
tained wide usage especially in recent years [18,16,15,9]. However, despite the
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fact that many of these models create a rough and useful segmentation, espe-
cially for segmented organ borders or organs with similar tissue (e.g. pancreas
parenchyma has a similar contrast with the bowel in CT imaging [2]), they can
produce unreliable results. Those regions can be presumed by their pixel-wise
uncertainty values at the test time. Considering the Monte Carlo Drop Out [10]
(MCDO) uncertainty of these areas in the segmentation network output, Ding et
al. developed an uncertainty-aware training procedure that focuses on segment-
ing the relatively certain parts correctly and reserving the remaining uncertain
parts for expert decision [5]. Although their method improved the segmentation
for certain areas, it is still challenging to manually segment the uncertain regions.

To improve the CNN’s results in medical image segmentation, post-processing
methods like conditional random fields (CRF) [13] could be directly applied to
improve the network predictions [9,6]. However, the CRF depends strongly on
the shape priors and is an independent process from the network features. In [4],
a region growing algorithm to refine the network output focusing on the uncer-
tain pixels is used and better results than a CRF process are obtained. Similarly,
to benefit from the network uncertainties in the post-processing step, Soberanis-
Mukul et al. developed a graph convolutional network (GCN) Refinement tech-
nique [20]. The main contributions of this work focus on two advancements over
the GCN Refinement procedure as follows:

– A new dynamic neighbor selection mechanism is defined.
– The dynamic neighbor selection mechanism is applied in two setups: inter-

graph and intra-graph.

Then, these methods on the neighbor selection are applied for an uncertainty-
aware training strategy in which the GCN and the segmentation network are
trained end-to-end. Our method increases the performance of the segmentation
in a selected application, which is the pancreas segmentation from CT images.

2 Related Work

Uncertainty Estimation: Uncertainty estimation is a critical task in auto-
mated medical imaging. In general, uncertainty can be modeled in two ways,
aleatoric and epistemic uncertainty [22]. Aleatoric uncertainty is related to noisy
observations of the distribution. On the other hand, epistemic uncertainty is re-
lated to deficient observations of the distribution [10]. The second one can be
reduced given enough data however, the first one can not be reduced without
removing the source of the noise. Kendal and Gal [10] proposed it is possible to
estimate epistemic uncertainty by using drop-out layers of the model and named
this process as Monte Carlo Dropout (MCDO). This metric can provide uncer-
tainty estimation per pixel during segmentation and hence it is possible to find
possible erroneous predictions using pixels with high uncertainty.

Graph Neural Networks: The prominence of Graph Neural Networks (GNNs)
is increasing due to the latest advancements in the area [21,3]. One of the works
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that accelerated the research is Graph Convolutional Neural Networks (GCN)
by Kipf and Weil [12]. They presented a convolution-based layer propagation
network that can directly work in a graph structure. The capabilities of various
GNN [14,8] models in terms of aggregation schemes is investigated by Xu et al.
[24] in a mathematical frame to characterize the expressive power of GNNs. It
is shown that single aggregators may fail to distinguish representations for node
classification. The recent work of Corso et al. [3] shows multiple aggregation
functions in GNNs are required to maximize information extraction from the
network and presented Principle Neighborhood Aggregation (PNA) blocks.

Dynamic Graph Neural Networks: For point cloud segmentation and clas-
sification tasks with graph neural networks, nearest spatial neighbors according
to point coordinates could be selected to create the edges between the points
[25]. However, in Dynamic Graph CNNs (DG-CNN) [23], after every network
layer, different edges are created according to feature distances between each
point. Thus, at the beginning of the network, edges indicate the spatially close
points, whereas at the end, they indicate semantically close points.

Our work utilizes uncertainty-aware CNN training by using graphs that are
constructed by the MCDO process during segmentation network training. Un-
certainty graphs are refined by employing multiple aggregator functions and
dynamic edge calculations.

3 Method

3.1 GCN Refinement

We take the GCN Refinement work of Soberanis-Mukul et al. [20] as our baseline.
In GCN Refinement, a graph is created by selecting the uncertain voxels and
some certain voxels next to the uncertain ones as graph nodes. Then, for every
node, 6 edges are created according to a 6-neighborhood, and 16 edges are created
randomly. Using the prediction outputs of certain nodes with low uncertainty, a
GCN model is trained in a semi-supervised manner.

In this paper, we focus on two main issues of the GCN Refinement proce-
dure. First, the random neighbor selection process is problematic since using
random neighbors, edges could be created between unrelative nodes, and the
reproducibility of the technique could be decreased. Second, the network’s con-
tribution to the GCN is limited since the training process is not executed in an
end-to-end manner. To address those limitations, we devise a dynamic neigh-
bor selection, which is investigated through both an intra-graph and inter-graph
edge selection procedure.

Some related definitions that are used throughout the paper are presented
next. The uncertainty value U(x) for the voxel at coordinate x of a segmentation
output is calculated using the entropy,
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U(x) = −
M∑
c=1

P (x)c logP (x)c, (1)

where P (x)c is the probability of the voxel belonging to the class c. This proba-
bility is estimated by using the expectation of the MCDO process with T passes
as

E(x) =
1

T

T∑
t=1

g(V (x), θt), (2)

where g represents the segmentation network, V (x) represents the voxel inten-
sity and θt represents the network parameters. For each node of the graph,
expectation E(x), entropy U(x), and voxel value V (x) are used as node features.
Weights for the edges are calculated as weighted summation of three different
metrics such as expectation diversity div(xi, xj) [26] (Eq.3), relative intensity
int(xi, xj) (Eq.4) and relative 3-D position pos(xi, xj) (Eq.4), as follows:

div(xi, xj) =

M∑
c=1

(P c (xi)− P c (xj)) log
P c (xi)

P c (xj)
, (3)

int(xi, xj) = exp

(
−‖V (x)− V (xj)‖2

2σ1

)
, (4)

pos(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
. (5)

In our work, we keep uncertainty calculation and graph features the same as
the baseline work. Our novelty lies in our connectivity structure and uncertainty-
aware CNN training as described in the next section.

3.2 Dynamic Edge Selection and Uncertainty Aware Training

The input CT image slices are fed to a 2D segmentation network, which is
a standard U-Net [18] model. The network is trained until it converges, then it
continues training with the graph-based method. At this stage, for each iteration,
the uncertainty analysis is performed on the input volume. Then, a graph model
for the volume, its edges, and graph features are created to use in the GCN.
Figure 1 illustrates the proposed method.

In [20], two types of edge creation mechanisms are used. First, for every node,
connections are created to the 6-neighbors. These local connections bring re-
gional information about each node, however, as the neighbor nodes have nearly
the same features with a selected node, the global graph topology is not discov-
ered until the last layers of the network. Second, in order to tolerate the afore-
mentioned problem, a set of randomly selected 16 neighbors are added to each
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Dice Loss

Segmentation with
2D U-Net Working on uncertain points

in a graph structure

Focal
Loss

...

...

Graphs from
training set

Intra-graph
neighbors

Inter-graph
neighbors

Fig. 1. In our uncertainty-aware training procedure, the GCN is trained combined
with the segmentation network. In the GCN, in addition to the edges created us-
ing 6-neighborhood, intra-graph neighbors or inter-graph neighbors are also selected.
Neighbors for only one node are shown in the figure.

node, and the corresponding edges are created. The random selection process
helps to improve the quantitative results, however, it lacks the reproducibility
of the results. Our hypothesis is that instead of choosing random neighbors,
neighbors that are chosen considering feature distances could improve the quan-
titative results and their interpretability. Thus, inspired by the neighbor-creation
mechanism in DG-CNN, we define two different types of neighbors in the feature
space: intra-graph and inter-graph neighbors.

Intra-graph Neighbors: As represented by the red lines in Figure 1, after
the patient graph is constructed, the k-nearest neighbors algorithm is applied to
select the nearest 5 new nodes from the same patient graph for each node.

Inter-graph Neighbors: For each training sample used to train the seg-
mentation network, graphs are created and graph features are calculated indi-
vidually. Then, for each node of the test graph, a total of 5 new neighbors are
selected as illustrated by the purple lines in Figure 1, according to dynamic fea-
ture distances obtained from graphs of training samples. To decrease the memory
need, farthest point sampling [17] with ratio 1

40 is applied on the train graphs.

Both inter-graph and intra-graph neighbor selection mechanisms can be ap-
plied to two different procedures: refinement and uncertainty-aware training
(UAT)3.

Refinement: The refinement procedure is similar to the one presented in
GCN Refinement [20]. All voxels under a segmentation mask of the test object are
refined in a semi-supervised manner. The segmentation network is not affected
by this procedure.

Uncertainty-Aware Training (UAT): We combined the graph network
with the segmentation network and trained using the training set in a supervised
manner. Thus wrongly labeled voxels have the chance to be corrected by the
graph during the train time. For each backward passing, we applied the losses

3 Our usage of the term Uncertainty-Aware Training is different from Ding et al. [5].
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only for one slice for the segmentation network to decrease the required memory
constraint.

For all studies, a simple network containing two PNA blocks and a GCN layer
is used. For the PNA blocks, mean, min, max, std aggregators; and identity,
amplification, attenuation scalers are used. The graph model and its usage for
inter-graph neighbors are as given in Figure 2.

4 Experiments

For a fair evaluation, the same pancreas CT dataset from NIH [19] and the
U-Net [18] segmentation model officially shared for the GCN Refinement are
used. Considering the hyper-parameters and training procedure from the base-
line, the GCN part is trained using an Adam [11] optimizer with a learning rate
1e−2. To ensure the balance between the GCN part and the U-Net, a learning
rate of the U-Net is selected as 1e−5. The number of nodes and edges are se-
lected heuristically. The other hyper-parameters are selected as the same as the
baseline. The U-Net model is trained alone for more than 50 epochs until its
performance converged. For the U-Net model and GCN, dice loss and focal loss
are used respectively. For all experiments, we used the PyTorch 1.7.1 framework
and PyTorch Geometric [7] library. We trained the models on a device having
Titan RTX.
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Fig. 2. Graph network model used for the ”Inter-graph Neighbors” setup. Graph fea-
tures are calculated in the PNA blocks for both the graph to refine and the train
graphs. Then, new edges are created using graph features.

To evaluate our method, we designed the experiments given in Table 1. We
execute 4 modes of our method: our own base methods “Intra-graph” and “Inter-
graph”; as well as the “Intra-graph UAT” and “Inter-graph UAT” with the
uncertainty-aware components.4

4 https://github.com/ituvisionlab/Uncertainty-Based-Dynamic-Graph-Neighborhoods

https://github.com/ituvisionlab/Uncertainty-Based-Dynamic-Graph-Neighborhoods
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Experiment 6-Neighbors
Intra-Graph
Neighbors

Inter-Graph
Neighbors

Uncertainty-Aware
Training

6-Connectivity X
Intra-graph X X
Inter-graph X X
Intra-graph UAT X X X
Inter-graph UAT X X X

Table 1. The list of experiments to evaluate our method on pancreas segmentation on
CT images.

4.1 Quantitative Results

For both refinement and UAT setups, the Dice scores for the test set are given
in Table 2 and 3 respectively. In both setups, our method overperforms the
baseline GCN refinement. Detailed explanations for each experiment’s results
are as below.

6-Connectivity: Since connectivity is dramatically reduced, the GCN model
suffered from deficient information. In fact, it decreases the segmentation net-
work’s performance. We can interpret that even random neighbors are useful to
keep the contextual information as in the original GCN Refinement.

Inter-graph: Since connectivity is increased quantitatively and semantically
meaningful edges are created, our method overperformed the baseline.

Intra-graph: Using the connections inside the same patient’s graph, better
results than Inter-graph refinement are obtained. The best refinement perfor-
mance in terms of the Dice score is achieved with this setup.

Inter-graph UAT: Improved results are obtained compared to the Inter
and Intra-graph models in terms of Dice scores and their standard deviations.
These improvements show that our UAT procedure is quantitatively better than
refinement.

Intra-graph UAT: This experiment yielded the best scores among all se-
tups. Our deductions for the Intra-graph experiment is also valid for this exper-
iment.

Dice Score
GCN Refinement (Baseline) 77.81± 6.3
6-Connectivity 76.11± 7.81
Inter-Graph 78.32± 6.41
Intra-Graph 78.87± 6.24
Table 2. Dice score results for Uncer-
tainty Aware Training results.

Dice Score
GCN Refinement (Baseline) 76.9± 6.6
Inter-Graph UAT 78.84± 5.84
Intra-Graph UAT 79.26± 5.78
Table 3. Dice score results for refinement
setups.

In Figure 3, visual results of our refinement method are compared with base-
line results. To demonstrate the correctly refined parts in uncertain regions,
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uncertainty maps are also included. As stated in the previous works [5,20], un-
certain regions frequently occur in the border areas. As it can be seen from the
visualizations, the refinement method improved the results of uncertain regions
both for inter-graph and intra-graph neighborhoods compared to baseline work.
The same results are also obtained for the UAT method in Figure 4. In UAT
visualizations, We observed the best visual results coherently with Dice scores
given in Table 2 and 3.

Fig. 3. Comparison of the GCN refinement. Red represents false positive, green rep-
resents true positive, and blue represent false negative regions. Each row corresponds
to another 2D slice. The columns correspond to the CNN model results, the uncer-
tainty map, the GCN Refinement results, the Inter-Graph and the Intra-Graph results
respectively.

4.2 Neighboring Results

The adequateness of our neighbor selection mechanism can be investigated by
checking the selected neighbors. In Figure 5, some voxels from test slices and
label maps of their selected neighbors are shown. According to the results, we
can conclude that the selected neighbors demonstrated a semantical similarity
as argued by Wang et al. for the DG-CNN [23]. Also for the roughly certain
voxels like the ones at the center of the image, the found neighbors are at the
more certain positions of the pancreas.

5 Conclusion

In this study, we introduced an uncertainty-aware CNN model training proce-
dure and a dynamic edge selection method. Although our graph generation relies
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Fig. 4. Visualization of the UAT method. Same coloring and row order with figure 3 is
applied. The columns correspond to the CNN model results, the uncertainty map, the
GCN Refinement results, the Inter-Graph with UAT and the Intra-Graph with UAT
results respectively.

Selected voxel Ne�ghbor Selected voxel Ne�ghbor 

Fig. 5. First and third columns show some voxels from pancreas slices, second and
fourth columns show pancreas label maps of one of their neighbors.
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on that of the baseline GCN Refinement method, unlike the baseline, we utilize
the graph network also for CNN training, allowing the model to learn about un-
certain regions in the segmentation. Additionally, inspired by the DG-CNN, we
implemented two different neighbor selection methods: Intra-graph and Inter-
graph. In our best setup using Intra-graph neighbors for Uncertainty-Aware
Training, we obtained an increase of ∼1.45% over GCN Refinement. Investi-
gating the quantitative results for both refinement and UAT, we can infer that
using these neighbor selection mechanisms and hence providing more contextual
information about the pancreas caused a general improvement over the results.

As future work, the proposed method could be extended to multi-organ seg-
mentation while the CNN part segments multiple organs and for each organ, a
different GCN is trained. Also, the method could be applied to larger datasets
to investigate whether the quality of the inter-graph neighborhood is dependent
on the variety of the dataset.

Acknowledgement. This work is supported by the Scientific Research Project
Unit (BAP) of Istanbul Technical University, Project Number: MOA-2019-42321.
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