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Abstract. Following the pandemic outbreak, several works have pro-
posed to diagnose COVID-19 with deep learning in computed tomogra-
phy (CT); reporting performance on-par with experts. However, models
trained/tested on the same in-distribution data may rely on the inher-
ent data biases for successful prediction, failing to generalize on out-of-
distribution samples or CT with different scanning protocols. Early at-
tempts have partly addressed bias-mitigation and generalization through
augmentation or re-sampling, but are still limited by collection costs and
the difficulty of quantifying bias in medical images. In this work, we
propose Mixing-AdaSIN; a bias mitigation method that uses a genera-
tive model to generate de-biased images by mixing texture information
between different labeled CT scans with semantically similar features.
Here, we use Adaptive Structural Instance Normalization (AdaSIN) to
enhance de-biasing generation quality and guarantee structural consis-
tency. Following, a classifier trained with the generated images learns to
correctly predict the label without bias and generalizes better. To demon-
strate the efficacy of our method, we construct a biased COVID-19 vs.
bacterial pneumonia dataset based on CT protocols and compare with
existing state-of-the-art de-biasing methods. Our experiments show that
classifiers trained with de-biased generated images report improved in-
distribution performance and generalization on an external COVID-19
dataset.

1 Introduction

Recently, several methods have been proposed to improve COVID-19 patient
diagnosis or treatment planning using CT scans [12,16,24,25]. The most methods
are often trained and evaluated on single source data; producing models that
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exploit underlying biases in the data for better predictions. Yet, they fail to
generalize when the bias shifts in external data reporting lower performance. This
has critical implications, especially in medical imaging where biases are hard to
define or accurately quantify. To address this, extensive data augmentation [5]
or re-sampling is often employed; though is still limited by collection (multi-
institute data) and how to express the bias when it is unknown. Thus, there is
a need for methods that mitigate bias in part or fully towards improved model
performance and better generalization.

In general, models trained on biased data achieve high accuracy and despite
their capacity lack the motivation to learn the complexity of the intended task.
For instance, a model trained on our in-house biased dataset with COVID-19
and bacterial pneumonia reported 97.18% (f1-score) on the validation set, yet
degrades to 33.55% when evaluated on an unbiased test-set. Here, we believe bias
may originate from varied CT protocols based on exam purpose, scanners, and
contrast delivery requirements [3]. Though contrast CT is a standard protocol,
it is challenging for practitioners to meet requirements during the pandemic due
to extra processes such as contrast agent injection and disinfection [21,11]. Fur-
ther, protocols may also vary for other pneumonia that exhibit similar imaging
characteristics with COVID-19 in CT. Consequently, we believe biased datasets
are often constructed unexpectedly and sometimes unavoidably due to the afore-
mentioned factors.

Among the existing techniques proposed to remove model dependence on
bias, augmentation is a de-facto technique for medical images; with other meth-
ods pre-defining the bias the trained model should be independent of. This as-
sumes bias is easily defined, but one has to take extra care in the medical setup
where such assumptions do not hold. To address this, we propose to construct a
de-biased dataset where spurious features based on texture information become
uninformative for accurate prediction. A key motivation is that accurate pre-
diction of COVID-19 from other pneumonia’s is dependent on the CT protocols
related to texture features and contrast. Thus, we propose to generate COVID-
19 CTs with bacterial pneumonia protocol characteristics and vice versa for
bacterial pneumonia with COVID-19, respectively.

Specifically, we propose Mixing-AdaSIN; a generative model based bias re-
moval framework that leverages Adaptive Structural Instance Normalization
(AdaSIN) and texture mixing to generate de-biased images used to train clas-
sifiers robust to the original bias. For image generation, we employ two main
components: (a) texture mixing, which enables realistic image generation, and
(b) AdaSIN, which guarantees structural consistency and prevents bias retain-
ment in the input image via modifying the distribution of the structure feature.
To prevent incorrect image generation, we first pre-train a contrastive encoder [8]
to learn key CT features and later use it to search similar image pairs for the
texture mixing step in the proposed generative framework. For evaluation, we
construct biased train/validation sets based on the CT protocol and an unbi-
ased test set from the non-overlapping CT protocols of the train/validation sets,
respectively. The proposed method reports high bias mitigation performance
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(66.97% to 80.97%) and shows improved generalization performance when veri-
fied on an external dataset. The main contributions of this work are summarized
as follows:

– We propose a generative model that can sufficiently mitigate the bias present
in the training dataset using AdaSIN and texture mixing.

– We show that the use of contrastive learning for texture transfer pair selec-
tion prevents incorrect image generation.

– We constructed a biased COVID-19 vs. bacterial pneumonia dataset to verify
bias mitigation performance. Our approach not only enabled improvements
for standard classification models such as ResNet18 but also current state-
of-the-art COVID-19 classification models.

– We also demonstrate the generalization performance of our classifier trained
with the de-biased data on an external public dataset.

2 Related Works

CT based COVID-19 Classification. Several methods have been proposed to
address this task since the inception of the pandemic [12,16,24,25]. For instance,
Li et al. [16] encode CT slices using a 2D CNN and aggregate slice predic-
tions via max-pooling to obtain patient-level diagnosis. Wang et al. [24] pro-
posed COVID-Net, an approach that utilizes the long-range connectivity among
slices to increase diagnostic performance. Later, Wang et al. [25] further improve
COVID-Net by employing batch normalization and contrastive learning to make
the model robust to multi-center training. However, these models did not address
the bias in the dataset and thus may fail to generalize on other datasets.
Bias Mitigation. To mitigate bias, Alvi et al. [1] employed a bias classifier and a
confusion loss to regularize the extracted features to make them indistinguishable
from a bias classifier. Kim et al. [15] proposed to mitigate bias through mutual
information minimization and the use of a gradient reversal layer. Though these
methods can mitigate distinct biases such as color, they fail to mitigate bias
in the medical domain since the bias from CT protocols is subtle and hard to
distinguish even for humans [2].

Another line of work is the augmentation based models that utilize techniques
such as arbitrary style transfer. Geirhos et al. [5] proposed shape-ResNet, an ap-
proach that finetunes a model pre-trained on AdaIN [10] generated images. Li et
al. [18] proposed a multitask learning approach that enables accurate prediction
by either using shape, texture, or both types of features. Though successful, a
key drawback is the heavy reliance on artistic image generation techniques that
may be detrimental for medical images and subsequent diagnoses. To address
this, our approach is able to capture subtle differences in the image to generate
consistent texture updated images. Thus, classifiers trained on the generated
images can avoid subtle bias information.
Generative Texture Transfer. Methods [10] and [6] both proposed to gen-
erate texture updated images based on arbitrary style transfer, with adaptive
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Fig. 1. Diagram of the proposed method.

and conditional instance normalization employed to transfer texture informa-
tion. CycleGAN [27] is another popular method for texture transfer that uses
the idea of consistency across several model outputs. However, these techniques
not only change the texture but also induce structural distortion to the outputs
which may introduce new forms of bias. Recently, Park et al. [20] achieved better
results by using an autoencoder with texture swapping as well as a co-occurrence
patch discriminator to capture high-level detail. In this method, the discrimi-
nator model may often change the original structural characteristics which is
undesirable for medical images. Since our main objective is to maintain the
structural information, we avoid techniques such as cycle consistency and patch
discriminators that often produce structurally distorted images.

3 Methods

Given a chest CT dataset D = {X1, ..., Xn} where Xi is a set of 2D CT slices
Xi = {xi1, ..., xim} each with its label yi ∈ {0, 1} denoting bacterial pneumonia
and COVID-19 samples, respectively. Our goal is to generate a dataset D′ =
{X1′, ..., Xn′} where each Xi′ is a set of texture updated CT slices that may
contain the bias information of the other label CT protocol. To achieve this,
we first pre-train a contrastive encoder using D to learn representative slice
features and then use it for slice similarity search i.e. xi1, x

j
2 ∼ D, yi 6= yj with

semantically similar image structures. Second, to generate xi′1 we feed searched
pairs xi1, x

j
2 to an encoder network E that outputs structural and texture features

used as input for a generator network G. Here, AdaSIN and texture mixing is
employed on the respective features for improved generation. Lastly, following
standard practice for adversarial-based methods, we also employ a discriminator
network D to improve the quality of generation. To enforce style and content
similarity, a pre-trained VGG19 [23] is used to optimize content loss between x′1
and x1, and a style loss between x′1 and x2, respectively. Through this process,
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we can generate images to construct D′ and then combine D and D′ to train
a classifier that will learn to ignore bias information. The overall framework is
presented in Figure 1 with specific details of each step categorized below.
Slice Similarity Search. As opposed to arbitrarily sampling pairs for texture
transfer in our generative framework, we employ similarity based sampling of
image pairs with similar structural features between the classes. Here, we pre-
train a momentum contrastive network (MoCo) [8] using the training data and
find the closest slice based on the L1 distance. This is crucial for generation since
using arbitrary image pairs for texture transfer can produce artificial images
without any clinical significance. Following, we construct image pairs for the
entire dataset for image generation.
Image Generation with AdaSIN and Texture Mixing . To generate a
de-biased and texture mixed image, an encoder network E takes as input the
sampled image pairs to produce texture and structure features that are first
modified via AdaSIN before being feed to G. To retain texture and structure,
both are required as inputs for G. Specifically, the structure feature is a feature
with spatial dimensions pooled at an earlier stage of E, whereas the texture
feature is an embedding vector obtained following 1× 1 convolution in the later
stages of E. In addition, we believe that directly employing these features for
generation can still retain the inherent bias contained in the features, thus we
propose to modify the structural features via AdaIN [10]. To achieve this, we
use the mean(µ(·)) and standard deviation (σ(·)) of the features before passing
to G. Formally,

AdaSIN(s1, s2) = σ(s2)

(
s1 − µ(s1)

σ(s1)

)
+ µ(s2), (1)

where s1 and s2 denotes the extracted structure features of the input image
pairs i.e. x1, x2 ∼ D. Next, G takes both features for an image generation and
texture transfer. Texture transfer is achieved via convolution weight modulation
and demodulation introduced in [14]. Herein, texture information is delivered to
each convolutional layer in G except for the last layer.

To train the entire framework, we follow the arbitrary style transfer train-
ing procedure described in [10]. A VGG19 pre-trained model is used to extract
features from the input pairs which is then used in the style Lstyle and content
Lcontent losses, respectively. The style loss minimizing the mean squared error
(MSE) between the generated output and the texture image, whereas the content
loss minizing the MSE between generated output and the structure image [17].
Further, we use an adversarial loss to improve the image generation quality
via LGAN (G,D) = −Ex1,x2∼D[D(G(AdaSIN(s1, s2), t2))], with regularization
(non-saturation loss) omitted for simplicity [7,14]. The final loss function is de-
fined as:

Ltotal = Lcontent + λLstyle + LGAN . (2)

Implementation Details. A Mask-cascade-RCNN-ResNeSt-200 [26] with de-
formable convolution neural network (DCN) [4] was employed to extract the
lung and lesion regions in the CT scans to mask out the non-lung regions and
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Table 1. The statistics and bias information (CT protocol) of the train/validation/test
dataset.

Split COVID CT protocol Bacterial CT protocol

Train 42 Non-Contrast (kVp: 120). 60 Contrast (kVp: 100).

Val 10 Non-Contrast (kVp: 120). 14 Contrast (kVp: 100).

Test 21 Various CT protocols from
different scanners: Con-
trast (18), etc (3).

23 Various CT protocols from
different scanners: Non-
Contrast (18), etc (5).

excluding slices that do not contain a lesion. The contrastive slice encoder was
trained for 200 epochs whereas the generative model was trained with a batch
size of 8 for 40,000 steps with Adam optimizer and learning rate of 0.002. Fur-
ther, the discriminator D follows Karras et al.’s [13,14] implementation and we
empirically set λ = 10.

4 Experiments and Results

Experiments Settings For evaluation, we constructed an in-house biased
dataset for training/validation and an unbiased testing dataset. First, we ex-
tracted the CT protocol per scan using metadata in the DICOM files and create
splits COVID-19 and bacterial pneumonia based on the protocol. The dataset
and bias information are shown in Table 1.

To evaluate the effect of bias mitigation using the generated images for
classification, a pre-trained ResNet18 and recent COVID-19 classification mod-
els [9,16,24,25] i.e. COVNet, COVID-Net, Contrastive-COVIDNet were com-
pared. The models were trained for 100 epochs with a batch size 64 and a
learning rate 0.001. We also applied random crops, horizontal flips and intensity
augmentations i.e. (brightness and contrast) as a baseline augmentation tech-
nique. Performance comparison of our approach against recent state-of-the-art
non-generation based bias mitigation methods [15,1] applied for natural image
classification is also reported. To verify the effectiveness of the proposed method,
we include comparisons against a commonly used arbitrary style transfer model
i.e. AdaIN, and the current state-of-the-art generation method i.e. swapping-
autoencoder [10,20]. For a fair comparison of the generation based methods,
the same texture pairs were utilized for a generation. Also, training and valida-
tion were performed three times for all methods with final average performance
reported.

Results on Internal Dataset In Table 2, we present the evaluation results
on the biased COVID-19 vs. bacterial pneumonia dataset. Initially, the model
shows high f1-score on the validation dataset i.e. 97.18%, yet significantly drops
to 33.55% on the unbiased test set. This shows that the classifier makes predic-
tions based on the bias information. The results of the learning-based models
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Table 2. The test results (f1-score) on biased COVID-19 vs. bacterial pneumonia
dataset. The results of validation dataset are written as Val. The model without inten-
sity augmentation is denoted w/o aug.

ResNet18 [9] COVNet [16] COVID-Net
[24]

Contrastive
COVID-Net [25]

Val w/o aug 97.18 89.33 78.30 93.31

Base 66.97 63.41 41.89 53.37
Base w/o aug 33.55 59.52 43.99 35.64

LNTL [15] 31.87 - - -
Blind eye [1] 32.72 - - -

AdaIN [10] 75.71 66.35 51.35 65.76
Swap [20] 76.84 67.64 56.28 62.60
Mixing-AdaSIN 80.97 74.61 61.57 66.16

i.e. Learning not to learn, and Blind eye show no considerable performance im-
provements and highlight the failure to mitigate the bias, especially for medical
domain images as reported in [2]. Further, these methods were proposed to re-
move bias that is distinctly recognizable in the image such as color. Capturing
and mitigating the subtle bias difference in the medical image is considerably
harder for such techniques.

Among generation based methods, the proposed method reports the best
performance. Even though AdaIN can transfer texture well, the quality of the
generated image is extremely low. Consequently, this inhibits classifier training as
shown by the limited performance improvements. Though swapping-autoencoder
updates the texture with high quality image generation results, two major draw-
backs were noted: (i) the generated image still retains bias, and (ii) it distorts
key representative characteristics by artificial translation of lesions i.e. changing
the lesion of COVID-19 to appear as bacterial pneumonia. Such phenomena may
be due to the direct usage of structure features, and use of the co-occurrence
discriminator which leads to structural information deformation. On the other
hand, our model employs two modules i.e. boosting a high-quality image gen-

Fig. 2. Grad-CAM [22] visualizations of the ResNet18 [9] classifier. Herein, Grad-CAM
of the base classifier pointed the normal lung area. On the other hand, the classifier
trained with Mixing-AdaSIN pointed the lesion correctly. Hence, the model with debi-
asing can be more generalized.
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Table 3. The test results (accuracy) of the ResNet18 [9] on the external COVID-19
dataset.

Base Base w/o aug AdaIN [10] Swap [20] Mixing-AdaSIN

Accuracy 24.11 34.04 50.35 76.60 77.30

eration via texture mixing ; and minimizing the bias artifact transfer through
an AdaSIN. We consider these techniques as instrumental in mitigating bias.
In addition, the classifier with a de-biased method employed a more general-
ized feature as shown in Figure 2. The Grad-CAM [22] of the trained classifier
pointed to the lesion more correctly, thus a better generalization performance is
expected.

Our proposed method can be easily applied to existing CT based COVID-
19 classification models. In particular, COVNet reported 74.61% f1-score which
represents successful mitigation of bias artifacts. However, COVID-Net and Con-
trastive COVID-Net showed relatively low accuracy, mainly due to slight differ-
ences in training details and architectures. Also, due to the long-range con-
nectivity in the models, reliance on bias information is heavily induced during
training.

Results on External Dataset To verify the generalization efficacy of our
trained classifier on external data, we employ the publicly available MosMed
dataset [19]. It consists of 1110 CT scans from COVID-19 positive patients.
However, the dataset contains CT scans that are not consistent with pneumonia
observed in our original dataset. Thus, we selected scans of severe and criti-
cal patients only to evaluate the trained models. In addition, since we trained
three classifiers from an internal experiment, we tested each classifier three times
and final average performance reported. In Table 3, results are fairly consis-
tent with improvements shown on the internal dataset evaluation. Our model
shows a significant improvement over the baseline with +1% gain over swapping-
autoencoder. More importantly, even though the classifier has not observed the
CT samples with a different protocol, performance was still consistent verifying
the utility of the proposed de-biasing technique.

5 Conclusion

In this work, we have proposed a novel methodology to train a COVID-19 vs.
bacterial pneumonia classifier that is robust to bias information present on train-
ing data. We constructed an in-house biased training dataset in conjunction with
an unbiased testing dataset and proved that our method allowed the classifier to
learn the appropriate features to correctly predict the labels without consider-
ing bias information and achieved better generalization. All of this was possible
thanks to an adequate image generation design that relies on two major com-
ponents: (a) texture mixing, which enables realistic image generation, and (b)
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AdaSIN, which prevents bias flow from the input to the output image in the
generation stage, while maintaining structural consistency. We proved the ben-
efits of our pipeline by achieving the best bias mitigation performance when
compared to other related methods in both our in-house dataset as well as in an
external dataset. Considering that biases can be easily included when construct-
ing datasets, we hope that our findings help to improve performance in various
medical tasks.
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