Skip to main content

Diffusion MRI Automated Region of Interest Analysis in Standard Atlas Space versus the Individual’s Native Space

  • Conference paper
  • First Online:
Book cover Computational Diffusion MRI (CDMRI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13006))

Included in the following conference series:

Abstract

White matter microstructures have been studied most commonly using diffusion tensor imaging (DTI) that models diffusivity in each voxel of diffusion MRI images as a tensor. Classic DTI parameters (e.g., mean diffusivity or MD, fractional anisotropy or FA) derived from the eigenvalues of tensors have been widely used to describe white matter properties. More recently, novel metrics like neurite orientation dispersion and density imaging (NODDI) have broadened the spectrum over which we can both characterize healthy connectivity and investigate pathology. When looking at specific brain regions, previous works combining DTI and NODDI have focused on regions of interest (ROI) analysis where regional masks were generated by mapping known atlas to standard spaces and applied to skeletonized FA maps from tract-based spatial statistics (TBSS). Recent advancement in probabilistic tractography, e.g., the FSL XTRACT toolbox, provides an alternative method of ROI analysis by estimating tract regions in an individual native diffusion space, but the exact advantages and disadvantages compared to using a standard space have not been well documented. In the present study, we perform ROI analysis on DTI and NODDI parameters from diffusion MRI (dMRI) of 39 healthy adults collected from two time points, using both standard-space method (“TBSS ROI analysis”) and native-space method (“XTRACT ROI analysis”). We compare the test-retest reliability of these two methods by evaluating the coefficient of variation (\(C_{V}\)) at each time point, the Pearson’s correlation (R) between the two time points, and the intra-class correlation coefficient (ICC) between the two time points. With these statistics, we aim to determine the precision of the TBSS ROI analysis and the XTRACT ROI analysis quantitatively in the practice of analyzing a particular dataset. The prospective results will provide a new and general reference for choosing analysis methods in future dMRI studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, A.L., Lee, J.E., Lazar, M., Field, A.S.: Diffusion tensor imaging of the brain. Neurotherapeutics 4(3), 316–329 (2007)

    Google Scholar 

  2. Andersson, J.L., Graham, M.S., Drobnjak, I., Zhang, H., Campbell, J.: Susceptibility-induced distortion that varies due to motion: correction in diffusion MR without acquiring additional data. Neuroimage 171, 277–295 (2018)

    Google Scholar 

  3. Andersson, J.L., Graham, M.S., Drobnjak, I., Zhang, H., Filippini, N., Bastiani, M.: Towards a comprehensive framework for movement and distortion correction of diffusion MR images: within volume movement. Neuroimage 152, 450–466 (2017)

    Google Scholar 

  4. Andersson, J.L., Graham, M.S., Zsoldos, E., Sotiropoulos, S.N.: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 141, 556–572 (2016)

    Google Scholar 

  5. Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2), 870–888 (2003)

    Google Scholar 

  6. Andersson, J.L., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016)

    Google Scholar 

  7. Andica, C., et al.: Scan-rescan and inter-vendor reproducibility of neurite orientation dispersion and density imaging metrics. Neuroradiology 62(4), 483–494 (2020)

    Google Scholar 

  8. Bouyagoub, S., Dowell, N.G., Gabel, M., Cercignani, M.: Comparing multiband and singleband EPI in NODDI at 3 T: what are the implications for reproducibility and study sample sizes? Magn. Reson. Mater. Phys. Biol. Med. 34, 1–13 (2020)

    Google Scholar 

  9. Daducci, A., Canales-Rodríguez, E.J., Zhang, H., Dyrby, T.B., Alexander, D.C., Thiran, J.P.: Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data. NeuroImage 105, 32–44 (2015)

    Google Scholar 

  10. Farquharson, S., et al.: White matter fiber tractography: why we need to move beyond DTI. J. Neurosurg. 118(6), 1367–1377 (2013)

    Google Scholar 

  11. Gardner, R.C., Yaffe, K.: Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell. Neurosci. 66, 75–80 (2015)

    Google Scholar 

  12. Jones, D.K., Leemans, A.: Diffusion tensor imaging. In: Modo, M.J., Bulte, J.W.M. (eds.) Magnetic Resonance Neuroimaging. Methods in Molecular Biology (Methods and Protocols), 711, 127–144. Springer. Cham (2011). https://doi.org/10.1007/978-1-61737-992-5_6

  13. Le Bihan, D., et al.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging: Official J. Int. Soc. Magn. Reson. Med. 13(4), 534–546 (2001)

    Google Scholar 

  14. Lash, R.S., Bell, J.F., Reed, S.C.: Epidemiology. In: Todd, K.H., Thomas, C.R., Alagappan, K. (eds.) Oncologic Emergency Medicine, pp. 3–12. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67123-5_1

  15. Lerma-Usabiaga, G., Mukherjee, P., Perry, M.L., Wandell, B.A.: Data-science ready, multisite, human diffusion MRI white-matter-tract statistics. Sci. Data 7(1), 1–9 (2020)

    Google Scholar 

  16. Lerma-Usabiaga, G., Mukherjee, P., Ren, Z., Perry, M.L., Wandell, B.A.: Replication and generalization in applied neuroimaging. Neuroimage 202, 116048 (2019)

    Google Scholar 

  17. Lucignani, M., Breschi, L., Espagnet, M.C.R., Longo, D., Talamanca, L.F., Placidi, E., Napolitano, A.: Reliability on multiband diffusion NODDI models: a test retest study on children and adults. NeuroImage 238, 118234 (2021)

    Google Scholar 

  18. Oishi, K., et al.: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. Neuroimage 46(2), 486–499 (2009)

    Google Scholar 

  19. Palacios, E.M., et al.: The evolution of white matter microstructural changes after mild traumatic brain injury: a longitudinal DTI and NODDI study. Sci. Adv. 6(32), eaaz6892 (2020)

    Google Scholar 

  20. Smith, S.M., et al.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4), 1487–1505 (2006)

    Google Scholar 

  21. Theaud, G., Houde, J.C., Boré, A., Rheault, F., Morency, F., Descoteaux, M.: Tractoflow: a robust, efficient and reproducible diffusion MRI pipeline leveraging nextflow & singularity. NeuroImage 218, 116889 (2020)

    Google Scholar 

  22. Warrington, S., et al.: Xtract-standardised protocols for automated tractography in the human and macaque brain. NeuroImage 217, 116923 (2020)

    Google Scholar 

  23. Yue, J.K., et al.: Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J. Neurotrauma 30(22), 1831–1844 (2013)

    Google Scholar 

  24. Yuh, E.L., et al.: Diffusion tensor imaging for outcome prediction in mild traumatic brain injury: a track-TBI study. J. Neurotrauma 31(17), 1457–1477 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanya T. Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, L.T., Baida, M., Wren-Jarvis, J., Bourla, I., Mukherjee, P. (2021). Diffusion MRI Automated Region of Interest Analysis in Standard Atlas Space versus the Individual’s Native Space. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2021. Lecture Notes in Computer Science(), vol 13006. Springer, Cham. https://doi.org/10.1007/978-3-030-87615-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87615-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87614-2

  • Online ISBN: 978-3-030-87615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics