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Abstract. Time series forecasting is a growing domain with diverse applications. 

However, changes of the system behavior over time due to internal or external 

influences are challenging. Therefore, predictions of a previously learned fore-

casting model might not be useful anymore. In this paper, we present EVent-

triggered Augmented Refitting of Gaussian Process Regression for Seasonal 

Data (EVARS-GPR), a novel online algorithm that is able to handle sudden shifts 

in the target variable scale of seasonal data. For this purpose, EVARS-GPR com-

bines online change point detection with a refitting of the prediction model using 

data augmentation for samples prior to a change point. Our experiments on sim-

ulated data show that EVARS-GPR is applicable for a wide range of output scale 

changes. EVARS-GPR has on average a 20.8 % lower RMSE on different real-

world datasets compared to methods with a similar computational resource con-

sumption. Furthermore, we show that our algorithm leads to a six-fold reduction 

of the averaged runtime in relation to all comparison partners with a periodical 

refitting strategy. In summary, we present a computationally efficient online fore-

casting algorithm for seasonal time series with changes of the target variable scale 

and demonstrate its functionality on simulated as well as real-world data. All 

code is publicly available on GitHub: https://github.com/grimmlab/evars-gpr.  

Keywords: Gaussian Process Regression, Seasonal Time Series, Change Point 

Detection, Online Time Series Forecasting, Data Augmentation. 

1 Introduction 

Time series forecasting is an emerging topic with applications in diverse domains, e.g. 

business, medicine or energy. These approaches make use of time series data, which 

describes a system behavior by a sequence of observations within a certain time period 

and try to predict future values. However, sudden changes of the system behavior over 

time are common issues in time series analysis. These sudden changes can be either 

caused by external or internal influences, e.g. due to operational or strategic decisions. 

https://github.com/grimmlab/evars-gpr


2 

 

For instance, currently many sales forecasting systems are affected by the SARS-CoV-

2 pandemic and energy demand predictions might be impeded by energetic optimiza-

tions of big consumers. Some but probably not all of the influential factors can be cap-

tured by features. Nevertheless, after a change of the generative data distribution, which 

reflects the relation between explanatory features and the target variable, predictions of 

a previously learned model might not be useful anymore. As a result, decisions based 

on these could cause damage such as a financial loss if e.g. an underestimated demand 

leads to missed sales [2, 13]. 

A common but computationally exhaustive approach to handle this problem is to 

periodically retrain a prediction model during the productive operation [13]. Further-

more, several methods combine change point detection (CPD), i.e. the problem of iden-

tifying a change of the generative data distribution, and Gaussian Process Regression 

(GPR). Some of them work offline and are therefore not suitable for changing data 

distributions during the online phase [9, 16]. Existing online approaches are either not 

event-triggered [21, 22], require a certain number of samples of a new generative dis-

tribution [12] or are based on a priori assumptions in terms of potentially changing time 

series properties [17]. Furthermore, none of them apply data augmentation (DA) on 

samples prior to a detected change point to reuse these augmented samples for model 

retraining. 

In this work, we present EVent-triggered Augmented Refitting of Gaussian Process 

Regression for Seasonal Data (EVARS-GPR), for which we provide an overview in 

Fig. 1. This novel online algorithm combines change point monitoring with a refitting 

of the prediction model using data augmentation. Compared to existing approaches, the 

main focus of our algorithm is on seasonal data with sudden changes of the target var-

iable scale while values of explanatory features remain approximately equal, which is 

a common issue in seasonal time series forecasting. The data augmentation step is trig-

gered after the detection of a change point and a deviation of the target variable scale 

compared to a certain threshold. This step updates known samples prior to a change 

point with new information on the changed target variable scale. Consequently, we gain 

potential useful data for the refitting of the prediction model. Hence, EVARS-GPR is 

event-triggered and as a result more efficient than a periodical refitting strategy. Fur-

thermore, the algorithm reacts immediately after a detected change point and a priori 

assumptions on the output scale changes are not required. As prediction model we use 

Gaussian Process Regression (GPR), see Appendix 1 for an overview. GPR is a flexible 

and non-parametric Bayesian method including uncertainties of a prediction value, 

which seems profitable with regard to the practical use of forecasts. Moreover, we eval-

uate the integration of different approaches for online CPD and DA, two essential parts 

of EVARS-GPR. We further analyze EVARS-GPR using simulated data and evaluate 

the performance on real-world datasets including different comparison partners.  

The remainder of this paper is organized as follows. In section 2, we describe the 

related work. Afterwards, we provide the problem formulation in section 3. Then, we 

outline EVARS-GPR in section 4 followed by the experimental setup in section 5. The 

experimental results are shown and discussed in section 6, before we draw conclusions.  
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Fig. 1. Overview of EVARS-GPR during the online phase and the preconditions in the of-

fline phase. The initial prediction model is trained offline. During the online phase, the prediction 

of the next target value is followed by a change point detection. If a change point is detected, the 

output scaling factor, which sets the target values of the current season in relation to previous 

seasons, is calculated. If the deviation between the current and last output scaling factor exceeds 

a threshold, then an augmented refitting of the prediction model is triggered. In case one of the 

two conditions is not fulfilled, EVARS-GPR continues using the current prediction model.  

2 Related Work 

Methods enabling GPR models to work with nonstationary data distributions can be 

divided into offline and online techniques. A common offline approach is to switch 

between kernel functions, e.g. by multiplication with sigmoid functions [9]. For some 

technical processes, multiple steady states can be determined. This enables the associ-

ation of a corresponding model. For inference, the one associated with the current state 

is selected [16]. However, these approaches are limited to scenarios for which change 

points respectively steady states can be defined a priori. Furthermore, change points 

occurring abruptly at a single point can be treated as a hyperparameter of a nonstation-

ary covariance function [11]. A further possibility of handling nonstationary data dis-

tributions is to augment the input using time-related functions. One option is the intro-

duction of a forgetting factor, which leads to a lower influence of the information con-

tained in older samples. Another common technique is to periodically update the hy-

perparameters of a GPR model using samples within a specified moving window [22]. 

A more elaborate approach is Moving-Window GPR (MWGPR). This method discards 

the oldest sample after a new one becomes available. Moreover, a dual preprocessing 

and dual updating strategy is performed. This introduces a recursive bias term, which 

depends on past model errors and is added to the model’s prediction to get the final 

forecast value [21]. All these approaches have the drawback of losing potentially useful 

information from earlier samples even if the data distribution did not change [22]. GP-

non-Bayesian clustering (GP-NBC) is focused on computational efficiency with the 

goal of making it suitable for resource-constrained environments, e.g. robotic plat-

forms. Based on online-trained GP models, likelihood ratio tests are performed in order 

to determine whether a new candidate model or a previously stored one should be used 
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in the further process. A disadvantage of GP-NBC is that a certain number of new sam-

ples needs to be available to enable the training of a new model. This may lead to a 

delayed reaction after a change point occurred [12]. The INstant TEmporal structure 

Learning (INTEL) algorithm was recently proposed. First, a template model is learned 

using offline data. Then, a set of candidate models with varying hyperparameters due 

to assumptions of potential changes during the productive operation is constructed 

based on the template model. For the final prediction, all models are combined using 

weights that correspond to the likelihood of a new observation given each model. In its 

current implementation, INTEL is limited to univariate data. Furthermore, possible 

changes happening during the online phase need to be assumed a priori [17].  

3 Problem Formulation 

We define a multivariate time series 𝒟 = {𝒙𝑡 , 𝑦𝑡}
𝑛 as a sequence of 𝑛 samples consist-

ing of 𝑑-dimensional explanatory variables called covariates 𝒙𝑡 ∈ ℝ𝑑 and a corre-

sponding target value 𝑦𝑡 ∈ ℝ at time step  . The target value at time step t, 𝑦𝑡 , is drawn 

from a distribution 𝑝𝑖(𝑦|𝒙𝑡), i.e. it is dependent on the covariates 𝒙𝑡. In this work, we 

consider seasonal data, meaning data that follows a certain periodicity of length 𝑛𝑠𝑒𝑎𝑠. 

We assume that periodicity is present for the target variable 𝑦 as well as for at least 

some of the covariates 𝑿. Thus, the target variable at time step   can be decomposed in 

a seasonal component 𝑠𝑡 and a residual 𝑟𝑡 summing up all other effects: 𝑦𝑡 = 𝑠𝑡 + 𝑟𝑡. 
Based on its periodicity of length 𝑛𝑠𝑒𝑎𝑠, the seasonal component at time step t is similar 

to those of previous seasons: 𝑠𝑡 ≈ 𝑠𝑡−𝑘⋅𝑛𝑠𝑒𝑎𝑠
 with 𝑘 ∈ ℕ\{0}. The covariates 𝒙𝑡 respec-

tively a subset 𝝌𝑡 ⊆ 𝒙𝑡 of them can also be decomposed in a seasonal component 

𝒔𝜒,𝑡  and a residual 𝒓𝜒,𝑡 into 𝝌𝑡 = 𝒔𝜒,𝑡 + 𝒓𝜒,𝑡, with similar periodicity characteristics 

regarding 𝒔𝜒,𝑡. The strength of the seasonal pattern, i.e. the influence of the seasonal 

component on the final value, might vary for different covariates and target variables. 

With 𝑛𝑜𝑓𝑓 samples of 𝒟, a model 𝑀, here a Gaussian Process Regression, can be 

trained offline using cross-validation to determine the hyperparameter configuration 

that delivers predictions 𝑦̂ generalizing best to the true distribution 𝑝𝑖(𝑦|𝒙). During the 

online phase, with a new input 𝒙𝑡 provided at every time step  , the model 𝑀 is used to 

deliver a prediction for the target variable value 𝑦̂𝑡 based on 𝒙𝑡. However, it is a com-

mon issue in time series forecasting that the generative distribution 𝑝𝑖(𝑦|𝒙) our predic-

tor 𝑀 was trained on might change to another distribution 𝑝𝑗(𝑦|𝒙). The time step at 

which such a shift happens is called a change point. In this work, we focus on output 

scale shifts, meaning that the value range of the target variable 𝑦 changes. Therefore, 

with regard to the periodicity of the covariates 𝑿 and the target variable y, a similar 

covariate vector 𝒙𝑡 corresponds to a different target variable 𝑦𝑡  as the generative distri-

bution changed. Consequently, the predictions produced by the previously trained 

model 𝑀 might not be useful anymore. With EVARS-GPR, we address this problem 

by combining online change point monitoring of the target variable 𝑦 and a refitting of 

the base model 𝑀 using data augmentation in case a change point is detected. A list of 

symbols including those of subsequent sections is provided in Appendix 2.  
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4 EVARS-GPR 

EVARS-GPR is an online algorithm that is focused on changes resulting in an output 

scale shift of seasonal multivariate time series, as outlined in section 3. In Fig. 1 and 

Algorithm 1, we give an overview of EVARS-GPR. Following the problem formula-

tion, we assume an offline-trained model 𝑀, which we subsequently call the base model 

𝑀𝑏𝑎𝑠𝑒. Prior to the online phase, the current prediction model 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is initialized 

with this offline-trained model 𝑀𝑏𝑎𝑠𝑒. As EVARS-GPR operates online, the main part 

starts with a new sample becoming available at time step  . As a first step, we retrieve 

the prediction of the next target value 𝑦̂𝑡 using the covariates 𝒙𝑡 as well as the current 

model 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡. Then, we run an online change point detection (CPD) algorithm, which 

is updated with the current target variable value 𝑦𝑡. In case we do not detect a shift of 

the generative distribution 𝑝(𝑦|𝒙𝑡), the current prediction model 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 stays un-

changed and the algorithm waits for the next time step  + 1. However, if we determine 

a change point at time step  , the remaining procedures of EVARS-GPR are triggered. 

First, as EVARS-GPR is focused on changes of the output scale in seasonal time series 

data, the output scaling factor 𝜂 is determined. For that purpose, the target values 𝑦 

prior to the change point and within a window of size 𝑛𝑤 are considered. These are set 

in relation to the target values 𝑦 within the corresponding window of 𝑛𝜂 previous sea-

sons with a season length of 𝑛𝑠𝑒𝑎𝑠:  

 

η =
1

𝑛𝜂

 ∑  
∑ 𝑦𝑖  

𝑡
𝑖=𝑡−𝑛𝑤

∑ 𝑦𝑗  
𝑡−𝑘⋅𝑛𝑠𝑒𝑎𝑠
𝑗=𝑡−𝑘⋅𝑛𝑠𝑒𝑎𝑠−𝑛𝑤

𝑛𝜂

𝑘=1

(1) 

The nominator of Eq. (1) includes current target values 𝑦𝑖  prior to the change point, 

whereas the denominator conveys information on the corresponding period of a previ-

ous season. This ratio is averaged over the number of seasons taken into account to 

retrieve the output scaling factor. Online CPD is prone to false alarms due to outliers. 

For this reason and to limit the amount of refittings for efficiency, we set a minimum 

threshold 𝜋𝜂 for the deviation between the current output scaling factor 𝜂 and the output 

scaling factor of the last augmented refitting 𝜂𝑜𝑙𝑑. If this threshold is exceeded, the 

augmented refitting of the current model 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is triggered. First, we generate an 

augmented set of samples 𝒟′ based on the dataset prior to the change point at time step 

 . Thereby, we reuse known samples and update them with new information on the 

changed target variable scale. Consequently, we gain an augmented dataset 𝒟′ for the 

refitting of the current model 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡. Furthermore, the last output scaling factor 𝜂𝑜𝑙𝑑 

is stored. Subsequently, the refitted current model is used for the predictions of the 

target value. With a new sample arriving at the next time step  + 1, the whole cycle of 

predicting, change point monitoring, potential data augmentation and model refitting 

starts again. 

The goal of CPD is to find abrupt changes in data, in the context of this work result-

ing in a shift of the scale of the target variable 𝑦. A CPD method should ensure a quick 

reaction to a change point. Considering a real time operation, computationally efficient 
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CPD methods are advantageous. Beyond that, for EVARS-GPR, the CPD and the pre-

diction methods are separated in order to enable the output scale-dependent, augmented 

model refitting. For these reasons, we excluded approaches such as GPTS-CP [24] and 

BOCPD-MS [15]. Based on the outlined criteria, we evaluated Bayesian Online Change 

Point Detection (BOCPD) and ChangeFinder (CF). More information on these two 

methods can be found in Appendix 3. In both cases, we deseasonalize data via seasonal 

differencing in order to prevent false alarms due to seasonal effects [2]. 

Besides online CPD, DA is an essential part of EVARS-GPR. For this work, we 

focus on computationally efficient approaches ensuring a real time operation and con-

sider small datasets as well. Therefore, we excluded generative models such as Time-

GAN [28] or C-RNN-GAN [20]. First, we augmented the original dataset consisting of 

all samples prior to a change point at time step  , 𝒟0:𝑡, by scaling the original target 

variable vector 𝒚0:𝑡. Thereby, we multiply the target variable vector 𝒚0:𝑡 with the output 

scaling factor 𝜂 and leave the covariates 𝒙0:𝑡 unchanged, resulting in the augmented 

dataset 𝒟0:𝑡
𝜂

. Considering the focus on shifts of the output scale, augmenting the dataset 

by scaling the target variable vector 𝒚 is a reasonable and efficient approach. Second, 

we used two virtual sample generation techniques for imbalanced regression: Random 

Oversampling with the introduction of Gaussian Noise (GN) [26] and SMOGN, which 

combines the former and the Synthetic Minority Oversampling TEchnique for Regres-

sion (SMOTER) [5, 27]. Both methods are outlined in Appendix 4.  

Algorithm 1. EVARS-GPR 

Inputs: 𝑀𝑏𝑎𝑠𝑒, 𝒟0:𝑛𝑜𝑓𝑓
 

Parameters: 𝑛𝜂 , 𝑛𝑠𝑒𝑎𝑠, 𝑛𝑤 , 𝜋𝜂 , CPD and DA parameters 

Results: 𝑦̂ 
1: 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑀𝑏𝑎𝑠𝑒  
2: 𝜂𝑜𝑙𝑑 = 1  
3: for new sample at time step t do  
4:       predict target value: 𝑦̂𝑡 = 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝒙𝑡)  
5:       perform online CPD: 𝑜𝑛𝑙𝑖𝑛𝑒_𝑐𝑝𝑑(𝒚0:𝑡 , 𝐶𝑃𝐷 𝑝𝑎𝑟𝑎𝑚𝑒 𝑒𝑟𝑠) ▷ App. 2 

6:       if change point detected then  

7: 
            calculate output scaling factor:  

                    𝜂 = 𝑐𝑎𝑙𝑐_𝑜𝑢 𝑝𝑢 _𝑠𝑐𝑎𝑙𝑖𝑛𝑔_𝑓𝑎𝑐 𝑜𝑟(𝑛𝜂 , 𝑛𝑠𝑒𝑎𝑠 , 𝑛𝑤) ▷ Eq. (1) 

8:             if |𝜂 − 𝜂𝑜𝑙𝑑| / 𝜂𝑜𝑙𝑑 > 𝜋𝜂 then  

9: 
                  augment data:  

                          𝒟′ = 𝑎𝑢𝑔𝑚𝑒𝑛 _𝑑𝑎 𝑎(𝒟0:𝑡, 𝐷𝐴 𝑝𝑎𝑟𝑎𝑚𝑒 𝑒𝑟𝑠) 
▷ App. 3 

10:                   refit current model: 𝑟𝑒𝑓𝑖 (𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝒟
′)  

11:                   𝜂𝑜𝑙𝑑 = 𝜂  
12:             end if   
13:       end if  
14: end for  
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5 Experimental Setup 

Subsequently, we will first describe the simulated data we used to determine the con-

figuration of EVARS-GPR and to analyze its behavior. Afterwards, we outline the real-

world datasets and the performance evaluation. 

5.1 Simulated Data 

EVARS-GPR is focused on seasonal data with changes regarding the target variable 

scale during the online phase. In order to configure and parametrize the algorithm as 

well as to analyze its behavior, we generated simulated data fulfilling these properties. 

Fig. 2 visualizes a simplified example of simulated data to explain its configuration. As 

we observe in Fig. 2a, the target variable 𝒚 follows a periodical pattern with a season 

length 𝑛𝑠𝑒𝑎𝑠 and an amplitude 𝑎. Between  𝑠𝑡𝑎𝑟𝑡 and  𝑒𝑛𝑑 during the online phase, we 

manipulate 𝒚 by a multiplication with a factor 𝛿, which results in a change of the output 

scale. The characteristics of this manipulation factor are visualized in Fig. 2b. At  𝑠𝑡𝑎𝑟𝑡, 

we begin with 𝛿𝑏𝑎𝑠𝑒 and increase 𝛿 by a slope of 𝜅 at every time step  , up to a maxi-

mum manipulation factor 𝛿𝑚𝑎𝑥. Then, the manipulation factor 𝛿 stays constant until its 

sequential decrease is triggered in order to reach 𝛿𝑏𝑎𝑠𝑒 at  𝑒𝑛𝑑. To meet the properties 

specified in section 3, the covariates 𝒙 are also periodical. Both 𝒙 and 𝒚 can be modified 

with additive random noise in order to model the seasonality more realistic. 

 
Fig. 2. (a) Visualization of a simplified example of simulated data with the base as well as the 

changed series, both with a season length of 𝑛𝑠𝑒𝑎𝑠. Between  𝑠𝑡𝑎𝑟𝑡 and  𝑒𝑛𝑑, the base series with 

its amplitude 𝑎 is changed by multiplication with a manipulation factor 𝛿. (b) Configuration of 

the manipulation factor 𝜹. Starting from 𝛿𝑏𝑎𝑠𝑒 at  𝑠𝑡𝑎𝑟𝑡, the manipulation factor 𝛿 increases by 

a slope 𝜅 at every time step  . If a maximum manipulation factor 𝛿𝑚𝑎𝑥 is reached, 𝛿 stays con-

stant. At  𝑒𝑛𝑑, the base factor 𝛿𝑏𝑎𝑠𝑒 is reached again after sequentially decreasing 𝛿 using 𝜅. 

In summary, the parameters 𝑛𝑠𝑒𝑎𝑠,  𝑠𝑡𝑎𝑟𝑡,  𝑒𝑛𝑑, 𝛿𝑚𝑎𝑥 and 𝜅 enable us to simulate various 

settings of the output scale change. For instance,  𝑠𝑡𝑎𝑟𝑡 and  𝑒𝑛𝑑 modify the duration 

and time of occurrence. Furthermore, 𝛿𝑚𝑎𝑥 marks the maximum extent of the output 

scale change, whereas 𝜅 determines its increase at every time step  , thus the speed 

respectively abruptness. Based on this, we formulated 67 scenarios and evaluated the 

performance to select the online CPD and DA method for EVARS-GPR, see section 

6.1. Furthermore, the parametrization of EVARS-GPR is based on these scenarios, see 

Appendix 5 for an overview. For that purpose, we employed a random search with 100 

different parameter settings for each combination of online CPD and DA method [3]. 

(a) Simplified example of simulated data

y

𝑛𝑠𝑒𝑎𝑠

𝑎 ⋅  𝑚𝑎𝑥

 𝑠𝑡𝑎𝑟𝑡  𝑒𝑛𝑑

offline phase online phase

𝑎

 𝑏𝑎𝑠𝑒 + 1 
 𝑏𝑎𝑠𝑒 +   

 𝑠𝑡𝑎𝑟𝑡  𝑒𝑛𝑑

 𝑚𝑎𝑥

 𝑏𝑎𝑠𝑒

…

𝜹

t

(b) Configuration of the manipulation factor 𝛿

t
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5.2 Real-World Datasets 

We additionally evaluated EVARS-GPR on real-world datasets. Based on the algo-

rithm’s scope, we selected seasonal time series data, for which we provide more infor-

mation in Appendix 6. For the horticultural sales prediction dataset CashierData1, we 

observe a strong sales increase of potted plants (PotTotal) during the SARS-CoV-2 

pandemic in 2020. Furthermore, we included the following common and publicly avail-

able datasets with changes of the output scale during the online phase: DrugSales [13], 

VisitorNights [13], AirPassengers [4] and MaunaLoa [10]. Beyond that, we used time 

series data without such changes to test the robustness of EVARS-GPR: Champagne-

Sales [18], TouristsIndia [7], Milk [19], Beer [13] and USDeaths [19]. We further 

applied mean imputation for missing values and added calendric as well as statistical 

features, e.g. lagged target variables, see Appendix 6 for an overview. Then, we used 

80 % of the data to determine the base model 𝑀𝑏𝑎𝑠𝑒, i.e. the configuration that leads to 

the best performance in a cross-validation setup. Thereby, we employed a random 

search over the model’s hyperparameters such as the kernel function as well as prepro-

cessing parameters, e.g. whether to perform a principal component analysis [3]. Finally, 

we evaluated EVARS-GPR in an online setting for the remaining left out 20 % of the 

data. 

5.3 Evaluation 

To evaluate the performance on a set of 𝑛 samples, we used the Root Mean Squared 

Error (RMSE), which is defined as 𝑅𝑀𝑆𝐸 = √1/n ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1  with the true value 

𝑦𝑖  and the prediction 𝑦̂𝑖. As the RMSE is scale-dependent, we further applied a scaling 

by the RMSE value achieved with 𝑀𝑏𝑎𝑠𝑒, subsequently called RMSE-ratio. Thus, the 

performances on simulated scenarios with different scales are comparable.  

We included several comparison partners for the real-world datasets. 𝑀𝑏𝑎𝑠𝑒 applies 

the offline-trained model during the whole online phase. Furthermore, we employed 

common but computationally exhaustive periodical refits of the prediction model, 

which trigger a retraining at every (PR1) respectively every second (PR2) time step 

[13]. Moving-Window GPR (MWGPR) is included as an additional computational re-

source demanding comparison partner, because a refit is needed at every time step   

[21]. Moreover, we defined methods with a computational resource consumption sim-

ilar to EVARS-GPR. These methods also react after a valid change point was detected, 

so the number of refittings and thus the resource consumption is similar. CPD_scaled 

scales the predictions of 𝑀𝑏𝑎𝑠𝑒 using the output scaling factor 𝜂, whereas CPD_retrain 

triggers a refitting of the current prediction model 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 using all original samples 

prior to a change point. CPD_MW also leads to a refitting, but only uses data of the 

season before the detected change point. For an estimate of the resource consumption, 

we measured the process-wide CPU time of EVARS-GPR and the computationally ex-

haustive methods on a machine with two 2.1 GHz Intel Xeon Gold 6230R CPUs (each 

with 26 cores and 52 threads) and a total of 756 GB of memory. 

                                                           
1 https://github.com/grimmlab/HorticulturalSalesPredictions  

https://github.com/grimmlab/HorticulturalSalesPredictions
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6 Experimental Results 

In this section, we will first describe the behavior on simulated data. Afterwards, we 

outline the results on real-world datasets, before we discuss them.  

6.1 Behavior on Simulated Data 

We determined the configuration and parameters of EVARS-GPR based on simulated 

data. Using CF for online CPD and a scaling of the original dataset for DA lead to the 

lowest RMSE-ratio averaged over all scenarios (0.549). Thereby, we experienced that 

EVARS-GPR is sensitive to hyperparameters, e.g. the window size 𝑛𝑤, see Appendix 

5 regarding the final values. We further analyzed EVARS-GPR on different output 

scale changes regarding the extent (maximum manipulation factor 𝛿𝑚𝑎𝑥), speed (slope 

𝜅), time of occurrence and duration (both via start  𝑠𝑡𝑎𝑟𝑡 respectively end index  𝑒𝑛𝑑). 

Results are visualized in Fig. 3. The performance of EVARS-GPR was in all scenarios 

at least equal to 𝑀𝑏𝑎𝑠𝑒 and outperformed it in most of the cases. Fig. 3a and 3b show 

that the advantage of EVARS-GPR was larger for longer periods with an output change. 

However, there was also an improvement for shorter durations. EVARS-GPR was ben-

eficial for several extents and speeds of the shift as well as robust for constant scenarios 

(𝛿𝑚𝑎𝑥 = 1), see Fig. 3c and 3d. For smaller slopes 𝜅, the improvement tended to de-

crease with a higher maximum manipulation factor 𝛿𝑚𝑎𝑥. We observe in Fig. 3d that 

EVARS-GPR’s benefit was mostly smaller for maximum manipulation factors 𝑑𝑚𝑎𝑥 

close to one. We included further scenarios in Appendix 7, which show similar results.  

 
Fig. 3. Behavior on a variety of simulated data (𝒏𝒔𝒆𝒂𝒔 = 𝟓𝟎). Each box shows the result of 

the scenario parametrized with the values given on the x- and y- axis. Numbers are RMSE-ratios, 

lower values reflect a higher improvement compared to 𝑀𝑏𝑎𝑠𝑒. We analyzed the following factors 

of the output scale change: (a) time of occurrence and duration via start and end indices  𝑠𝑡𝑎𝑟𝑡 

respectively  𝑒𝑛𝑑, (b) same factors with a higher slope 𝜅 and maximum manipulation factor 𝛿max, 

(c) extent and speed of the change via 𝜅 and 𝛿𝑚𝑎𝑥, (d) same factors on a finer grid for 𝛿𝑚𝑎𝑥. 

(a) Start vs. end index:  𝑠𝑡𝑎𝑟𝑡 vs.  𝑒𝑛𝑑 (𝛿𝑚𝑎𝑥 =  , 𝜅 = 0  ) (b) Start vs. end index:  𝑠𝑡𝑎𝑟𝑡 vs.  𝑒𝑛𝑑 (𝛿𝑚𝑎𝑥 =  , 𝜅 = 0  )

(c) Slope vs. maximum factor: 𝜅 vs. 𝛿𝑚𝑎𝑥 (length: 𝑛𝑠𝑒𝑎𝑠) (d) Slope vs. maximum factor: 𝜅 vs. 𝛿𝑚𝑎𝑥 (length: 𝑛𝑠𝑒𝑎𝑠)
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6.2 Results on Real-World Datasets 

We further evaluated EVARS-GPR on several real-world datasets. In Table 1, we show 

the model performance in terms of RMSE compared to methods with a similar compu-

tational resource consumption for datasets with a changing target variable scale. As we 

observe, EVARS-GPR was superior on all datasets. Our algorithm outperformed 𝑀𝑏𝑎𝑠𝑒 

with an improvement of 37.9 % averaged over all datasets and the second-best compet-

ing method among all datasets by 20.8 %.  

Table 1. Performance comparison based on RMSE for datasets with output scale changes 

during the online phase for EVARS-GPR and methods with a similar resource consump-

tion. Numbers show the RMSE of the simulated online phase. The best results are printed bold. 

 𝑀𝑏𝑎𝑠𝑒 CPD_scaled CPD_retrain CPD_MW EVARS-GPR 

CashierData 1351.43 2266.57 1314.55 1683.11 1125.34 

DrugSales 6.15 5.39 3.90 4.46 2.75 

AirPassengers 171.58 101.61 108.79 174.31 93.88 

MaunaLoa 34.37 32.01 31.22 33.50 27.96 

VisitorNights 10.97 9.30 8.80 10.34 5.11 

Beyond that, we compared EVARS-GPR to computationally exhaustive methods, for 

which we show the results as well as the process-wide CPU time in Table 2. EVARS-

GPR outperformed all other methods with respect to the CPU time. In comparison to 

PR2, the method with the second lowest runtimes, the runtime of EVARS-GPR aver-

aged over all datasets was more than six times lower. It is not surprising that these 

comparison partners outperformed EVARS-GPR with respect to predictive power, 

however at the cost of computational runtime. Regarding AirPassengers and Mau-

naLoa, for which EVARS-GPR was outperformed in terms of RMSE, the CPU time of 

EVARS-GPR was 16 respectively 250 times more efficient. However, for Cash-

ierData, DrugSales and VisitorNights, the RMSE of EVARS-GPR was comparable to 

the leading ones, while being computationally much more efficient.  

Table 2. RMSE and CPU time compared to computationally exhaustive methods for da-

tasets with output scale changes. Numbers show the RMSE and the CPU time averaged over 

ten runs. The best RMSE results and lowest CPU times excluding 𝑀𝑏𝑎𝑠𝑒 are printed bold.  

  𝑀𝑏𝑎𝑠𝑒 PR1 PR2 MWGPR EVARS-GPR 

CashierData 
RMSE 1351.43 1119.23 1185.82 1098.16 1125.34 

CPU time [s] 2.38 1443.80 741.71 1106.53 166.06 

DrugSales 
RMSE 6.15 2.44 2.54 2.86 2.75 

CPU time [s] 0.61 762.05 404.47 550.99 52.40 

AirPassengers 
RMSE 171.58 69.06 74.28 72.27 93.88 

CPU time [s] 0.93 587.70 303.31 514.53 34.53 

MaunaLoa 
RMSE 34.37 11.12 12.60 9.88 27.96 

CPU time [s] 3.60 27459.79 13790.61 19525.85 78.99 

VisitorNights 
RMSE 10.97 5.08 5.21 5.85 5.11 

CPU time [s] 0.35 40.85 22.28 33.87 6.24 
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In Table 3, we see that EVARS-GPR was robust for datasets without an output scale 

change during the online phase as the results were identical to 𝑀𝑏𝑎𝑠𝑒. 

Table 3. Robustness on datasets without output scale changes during the online phase. Num-

bers show the RMSE of the simulated online phase. 

 ChampagneSales TouristsIndia Milk Beer USDeaths 

𝑀𝑏𝑎𝑠𝑒 1158.26 90707.30 15.16 16.88 276.72 

EVARS-GPR 1158.26 90707.30 15.16 16.88 276.72 

6.3 Discussion 

We showed that EVARS-GPR is able to handle seasonal time series with changes of 

the target variable scale, both on simulated and real-world data. The performance on 

simulated data demonstrates a broad applicability regarding the time of occurrence, du-

ration, speed and extent of the output scale change, with a higher advantage over 𝑀𝑏𝑎𝑠𝑒 

for longer durations. Shorter changes are more difficult to detect for online CPD meth-

ods, which is one reason for the lower improvement in such settings. Our results further 

indicate that EVARS-GPR can handle various speeds and extents of the output scale 

change, which can be seen as different abruptness levels. This applies both for increases 

as well as decreases. Experiments with smaller extents showed smaller improvements 

of EVARS-GPR, as it is more difficult to detect such changes. A similar effect can be 

observed for smaller speeds and larger extents of the output scale change. Nevertheless, 

EVARS-GPR was at least on par with 𝑀𝑏𝑎𝑠𝑒 in all cases and outperformed it in most 

of the settings. 

In addition, EVARS-GPR outperformed all methods with a similar computational 

resource consumption with respect to RMSE on real-world datasets, with a mean im-

provement of 20.8 % compared to the second-best approaches. Regarding AirPassen-

gers and MaunaLoa, the advantage of EVARS-GPR in terms of RMSE was 7.6 % re-

spectively 10.4 %. For these datasets, the output scale changes at the detected change 

points were rather small. Consequently, the DA step did not enhance the performance 

that much, which might be a reason for the smaller improvements on RMSE in contrast 

to the other datasets. Furthermore, the difference to other periodical refitting strategies 

was largest for AirPassengers and MaunaLoa. This might indicate that not all possible 

change points were detected or that these datasets possess further data distribution shifts 

not resulting in an output scale change. With respect to the other three datasets, 

EVARS-GPR’s results were comparable to the periodical refitting strategies, suggest-

ing that all relevant change points could be detected. Moreover, we showed EVARS-

GPR’s efficiency in comparison with periodical refitting strategies with a more than 

six-fold reduction of the averaged runtime in relation to PR2. This advantage of 

EVARS-GPR was even bigger for AirPassengers and MaunaLoa with a 16 respectively 

250 times lower runtime compared to the best performer. Finally, EVARS-GPR was 

robust for datasets without changes of the target variable scale.  

The online detection of change points is an essential part of EVARS-GPR, as wrong 

or missed detections might lead to a performance decrease. We addressed the problem 
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of misdetections due to outliers with the introduction of a threshold for the output scal-

ing factor. Nevertheless, EVARS-GPR would probably benefit a lot from improve-

ments of the online CPD method. Moreover, we observed lower RMSE values for pe-

riodical refitting strategies, especially on a dataset with more samples (MaunaLoa). 

Thus, a combination of EVARS-GPR and a periodical refitting strategy with a lower 

frequency is an interesting approach for future research. This might result in a compu-

tationally efficient algorithm, which is additionally able to capture changing data dis-

tributions that do not result in a target variable scale. We further determined the param-

eters of the whole pipeline based on simulated data. This might not be the best strategy 

for all settings and real-world applications. However, as the simulated scenarios were 

diverse and reflected the scope of this work with output scale changes, this is a reason-

able approach. Nevertheless, another way for parameter optimization is a further po-

tential for future research. One possibility is to integrate this into the cross-validation 

performed offline by simulating different manipulations of the real-world data. Beyond 

that, EVARS-GPR is model-agnostic. Therefore, it seems interesting to transfer this 

approach to other prediction models, e.g. XGBoost, which is limited to prediction val-

ues within the target value range of the training set [8]. 

7 Conclusion 

In this paper, we presented EVARS-GPR, a novel online time series forecasting algo-

rithm that is able to handle sudden shifts in the target variable scale of seasonal data by 

combining change point monitoring with an augmented refitting of a prediction model. 

Online change point detection and data augmentation are essential components of 

EVARS-GPR, for which we evaluated different approaches based on simulated scenar-

ios. Using the resulting configuration and parameterization, we showed on simulated 

data that EVARS-GPR is applicable for a wide range of output scale changes. Further-

more, EVARS-GPR had on average a 20.8 % lower RMSE on different real-world da-

tasets compared to methods with a similar computational resource consumption. More-

over, we demonstrated its computational efficiency compared to periodical refitting 

strategies with a more than six-fold reduction of the averaged runtime. 
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Appendix 1: Gaussian Process Regression 

With regard to the practical use of forecasts, the uncertainty of a prediction value seems 

profitable. Providing those by its definition is a main advantage of the nonparametric 

Bayesian method GPR. To explain this approach, we use the linear model that is defined 

as 

𝑓(𝒙) =  𝒙𝑇𝒘,     𝑦 =  𝑓(𝒙) +  𝜖 ( ) 

with 𝒙 being the input vector, 𝒘 the vector of weights, the function value 𝑓(𝒙) and 

observed target value 𝑦 with additive noise 𝜖 assumed to follow a zero-mean Gaussian. 

Combined with the independence assumption of the observation values, we get the like-

lihood, which reflects how probable the observed target values 𝒚 are for the different 

inputs 𝑿 and weights 𝒘: 

𝑝(𝒚|𝑿,𝒘) = ∏𝑝(𝑦𝑖|𝒙𝒊, 𝒘)

𝑗

𝑖=1

( ) 

As usual for a Bayesian formulation, we define a prior over the weights, for which 

we again choose a zero-mean Gaussian. With the defined prior and the likelihood based 

on the observed data, we can use Bayes’ rule to get the posterior of the weights given 

the data: 

𝑝(𝒘|𝑿, 𝒚) =
𝑝(𝒚|𝑿,𝒘)𝑝(𝒘)

𝑝(𝒚|𝑿)
( ) 

This is also called the maximum a posteriori estimate, which - provided the data - 

delivers the most likely set of weights 𝒘. As 𝑝(𝒚|𝑿) is independent of 𝒘, we can re-

formulate this equation expressing the posterior distribution with a Gaussian defined 

by a mean and covariance matrix: 

𝑝(𝒘|𝑿, 𝒚) ∼ 𝒩(𝒘̅, 𝑨−1) (5) 

During inference, we marginalize out 𝒘 and as a result take the average based on all 

possible 𝒘 weighted by their posterior probability: 

𝑝(𝑦𝑇𝑒𝑠𝑡|𝒙𝑇𝑒𝑠𝑡 , 𝑿, 𝒚) = ∫𝑝(𝑦𝑇𝑒𝑠𝑡|𝒙𝑇𝑒𝑠𝑡 , 𝒘) 𝑝(𝒘|𝑿, 𝒚) 𝑑𝒘

= 𝒩 (
1

𝜎2
 𝒙𝑇𝑒𝑠𝑡

𝑇  𝑨−1 𝑿 𝒚,  𝒙𝑇𝑒𝑠𝑡
𝑇  𝑨−1 𝒙𝑇𝑒𝑠𝑡 ) (6)

 

Therefore, we do not only get an output value, but also an uncertainty. So far, we 

reached the Bayesian formulation of linear regression with its limited expressiveness. 

To overcome this constraint to linearity, we can project the inputs into a high-dimen-

sional space and apply the linear concept there. This transformation can be accom-

plished using basis functions 𝜙(𝒙): ℝ𝑑 → ℝ𝑖 leading to the following model with 𝑖 
weights 𝒘: 
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𝑓(𝒙) = 𝜙(𝒙)𝑇𝒘 (7) 

Conducting the same derivation as shown above results in a similar outcome: 

𝑝(𝑦𝑇𝑒𝑠𝑡|𝒙𝑇𝑒𝑠𝑡 , 𝑿, 𝒚) = 𝒩 (
1

𝜎2
𝜙(𝒙𝑇𝑒𝑠𝑡)

𝑇 𝑨−1 𝛷(𝑿)𝒚, 𝜙(𝒙𝑇𝑒𝑠𝑡)
𝑇 𝑨−1 𝜙(𝒙𝑇𝑒𝑠𝑡)) (8) 

The need of inverting the 𝑖𝑥𝑖 matrix 𝑨 possibly causes computational problems if 

the dimension of the feature space 𝑖 becomes large. To solve this, we can reformulate 

the above using the so-called “kernel trick”. This leads to the formulation of a Gaussian 

Process, which is completely specified by its mean and covariance function: 

𝑓(𝒙) ∼ 𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙′)) (9) 

𝑚(𝒙) = 𝔼[𝒇(𝒙)] (10) 

𝒌(𝒙, 𝒙′) = 𝔼[(𝒇(𝒙) − 𝒎(𝒙))(𝒇(𝒙′) − 𝒎(𝒙′))] (11) 

 

𝑘(𝒙, 𝒙′) consists of the covariance value between any two sample points 𝒙 and 𝒙′ re-

sulting in a 𝑛𝑥𝑛 matrix for a training set length of 𝑛. The assumption is that the simi-

larity between samples reflects the strength of the correlation between their correspond-

ing target values. Therefore, the function evaluation can be seen as a draw from a mul-

tivariate Gaussian distribution defined by 𝑚(𝒙) and 𝑘(𝒙, 𝒙′). Thus, Gaussian Processes 

are a distribution over functions rather than parameters, in contrast to Bayesian linear 

regression. For simplicity, the mean function is often set to zero or a constant value. 

There are many forms of kernel functions, which need to fulfill certain properties, e.g. 

being positive semidefinite and symmetric. Furthermore, they can be combined, e.g. by 

summation or multiplication. The choice of the covariance kernel function is a deter-

mining configuration of GPR and its parameters need to be optimized during training 

[15, 17]. 
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Appendix 2: List of Symbols 

General Symbols 

𝑀    prediction model 

     current time step 

𝒟    time series dataset 

𝑛    number of samples of the time series dataset 𝒟 

𝑛𝑜𝑓𝑓   number of samples that are available during the offline phase 

𝒙𝑡    covariate vector at time step   

𝑑    dimensionality of the covariate vector 𝒙𝑡 

𝑿    covariate matrix including all covariates vectors  

𝝌𝑡    subset of the covariate vector 𝒙𝑡 at time step   

𝒔𝜒,𝑡     seasonal component of the subset of the covariate vector 𝝌𝑡 at time step   

𝒓𝜒,𝑡   residual component of the subset of the covariate vector 𝝌𝑡 at time step   

𝑦𝑡     true target value at time step   

𝑠𝑡    seasonal component of 𝑦𝑡  at time step   

𝑟𝑡    residual component of 𝑦𝑡  at time step   

𝑛𝑠𝑒𝑎𝑠   length of one season 

𝑦̂𝑡    predicted target value at time step   

𝑝(𝑦|𝒙𝑡)  generative distribution of 𝑦 

 

EVARS-GPR 

𝑀𝑏𝑎𝑠𝑒  offline-trained base model 

𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡  current prediction model 

𝜂    current output scaling factor 

𝜂𝑜𝑙𝑑   output scaling factor of last augmented refitting 

𝑛𝑤   window size for the calculation of the output scaling factor 𝜂 

𝑛𝜂 number of previous seasons considered for the calculation of the output 

scaling factor 𝜂 

𝜋𝜂 minimum threshold for the deviation between the current 𝜂 and the last out-

put scaling factor 𝜂𝑜𝑙𝑑  

𝒟′    augmented set of samples 

 

Simulated Data 

𝑎    amplitude  

𝑛𝑠𝑒𝑎𝑠   length of a season 

 𝑠𝑡𝑎𝑟𝑡   start index of the output scale change 

 𝑒𝑛𝑑    end index of the output scale change 

𝛿    multiplicative manipulation factor for the output scale change 

𝛿𝑏𝑎𝑠𝑒   starting manipulation factor  

𝛿𝑚𝑎𝑥   maximum manipulation factor for the output scale change 

𝜅     slope, i.e. increase per time step  , for the manipulation factor 𝛿 
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Appendix 3: Online Change Point Detection 

The goal of CPD is to find abrupt changes in data, in the context of this work resulting 

in a shift of the scale of the target variable 𝑦. Based on the criteria outlined in section 

4, we selected Bayesian Online Change Point Detection and ChangeFinder. 

Bayesian Online Change Point Detection (BOCPD) is a common probabilistic tech-

nique. BOCPD assumes that a sequence of observations 𝑦1 , 𝑦2, … , 𝑦𝑇 can be divided 

into non-overlapping partitions 𝜌 within which the data is i.i.d. from a distribution 

𝑝(𝑦𝑡|𝜃𝜌), with the parameters 𝜃𝜌 being i.i.d. as well. A central aspect of BOCPD is the 

definition of the run length at time step  , 𝑟𝑡, i.e. the time since the last change point. 

The posterior distribution of the run length 𝑟𝑡 can be determined using Bayes’ theorem 

with 𝑦𝑡
(𝑟)

 denoting the observations associated with 𝑟𝑡: 

𝑝(𝑟𝑡|𝑦1:𝑡) =
∑ 𝑝(𝑟𝑡|𝑟𝑡−1) 𝑝(𝑦𝑡|𝑟𝑡−1, 𝑦𝑡

(𝑟)
𝑟𝑡−1

) 𝑝(𝑟𝑡−1, 𝑦1:𝑡−1)

∑ 𝑝(𝑟𝑡 , 𝑦1:𝑡)𝑟𝑡

(1 ) 

The conditional prior 𝑝(𝑟𝑡|𝑟𝑡−1) is defined to be nonzero only for 𝑟𝑡 = 0 and 𝑟𝑡 =
𝑟𝑡−1 + 1 making the algorithm computationally efficient: 

𝑝(𝑟𝑡|𝑟𝑡−1) = {
𝐻(𝑟𝑡−1 + 1)   𝑖𝑓 𝑟𝑡 = 0

 1 − 𝐻(𝑟𝑡−1 + 1) 𝑖𝑓𝑟𝑡 = 𝑟𝑡−1 + 1
0 𝑜 ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1 ) 

𝐻(𝜏) =
𝑝𝑔𝑎𝑝(𝑔=𝜏)

∑ 𝑝𝑔𝑎𝑝(𝑔=𝑡)∞
𝑡=𝜏

 is the so-called hazard function with the a priori probability dis-

tribution over the interval between between change points 𝑝𝑔𝑎𝑝(𝑔). To apply BOCPD, 

a hazard function needs to be provided. With 𝑝𝑔𝑎𝑝(𝑔) being a discrete exponential dis-

tribution with timescale 𝜆, the hazard function is constant at 𝐻(𝜏) = 1/𝜆, which is a 

common assumption. Finally, using the posterior distribution of the run length 𝑟𝑡, a 

change point can be determined [1, 2]. 

 Another type of online CPD techniques suitable for our purposes are likelihood ratio 

methods, which declare a change point if the probability distributions before and after 

a candidate point differ significantly. ChangeFinder is a common approach of this kind, 

which employs a two-stage learning and smoothing strategy using Sequentially Dis-

counting Auto-Regression (SDAR) model learning. In the first stage, we fit an SDAR 

model for each new sample at time step   to represent the statistical behavior of the 

data. The model parameters are updated sequentially with a reduction of the influence 

of older samples. Thereby, we obtain a sequence of probability densities 𝑝1, 𝑝2, … , 𝑝𝑡 

for each 𝑦𝑡. Based on these, we assign an outlier score to each data point, which is 

defined as 𝑠𝑐𝑜𝑟𝑒(𝑦𝑡) =  −log 𝑝𝑡−1(𝑦𝑡). This enables the formulation of an auxiliary 

time series 𝑜𝑡 by building moving averages of the outlier scores within a time window 

𝑇 for each time step  : 

𝑜𝑡 = 
1

𝑇
∑ 𝑠𝑐𝑜𝑟𝑒(𝑦𝑖)

𝑡

𝑖=𝑡−𝑇+1
(1 ) 
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After this first smoothing, the second stage starts. Thereby, another SDAR model is 

fitted using 𝑜𝑡, also resulting in a sequence of probability densities 𝑞1, 𝑞2, … , 𝑞𝑡 . Finally, 

we get a change point score 𝑧𝑡 after a second smoothing step within a time window 𝑇:  

𝑧𝑡 = 
1

𝑇
∑ −log 𝑞𝑡−1(𝑜𝑡)

𝑡

𝑖=𝑡−𝑇+1
(15) 

A higher value of 𝑧𝑡 corresponds to a higher probability of a change point at time step 

 . Hence, a threshold 𝜋𝑐𝑓 at which a change point is declared, needs to be defined [2, 

14, 25]. 
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Appendix 4: Data Augmentation 

As outlined in section 4, we used Virtual Sample Generation approaches for imbalanced 

regression besides a scaling of the original dataset for data augmentation. These meth-

ods are suitable for continuous target variables and small datasets. We therefore se-

lected the two following approaches: Random Oversampling with the introduction of 

Gaussian Noise (GN) [26] and SMOGN, which combines the former and the Synthetic 

Minority Oversampling TEchnique for Regression (SMOTER) [5, 27]. Both methods 

start with the assignment of a relevance value to every sample (𝒙𝑖 , 𝑦𝑖) of a dataset 𝒟𝑣𝑠𝑔 

using a relevance function 𝜙: 𝑦 → [0,1]. Based on these and a specified threshold 𝜋𝑟𝑒𝑙 , 

the dataset 𝒟𝑣𝑠𝑔 is splitted into a subset of normal and rare cases, 𝒟𝑁 respectively 𝒟𝑅. 

We employed a relevance function, which proposes an inverse proportionality of the 

relevance value and the probability density function of 𝑦 [23]. Therefore, extreme cases 

have a higher relevance value. Furthermore, we tested two compositions of 𝒟𝑣𝑠𝑔. In the 

first case, 𝒟𝑣𝑠𝑔 was equal to the original dataset up to the change point at time step  , 

𝒟0:𝑡, and in the second one  𝒟0:𝑡 and the output scaled dataset 𝒟0:𝑡
𝜂

 were concatenated. 

Both GN and SMOGN then apply a Random Undersampling strategy for the normal 

cases 𝒟𝑁, meaning that a specified share of these is randomly selected to get 𝒟𝑢𝑠.  

Furthermore, GN generates new samples 𝒟𝑜𝑠 based on the rare cases 𝒟𝑅 by adding 

Gaussian Noise to the target variable as well as the numeric covariates. Values for nom-

inal attributes are randomly selected with a probability proportional to their frequency 

in the dataset. Finally, for GN, the undersampled and oversampled cases are concate-

nated to the augmented dataset 𝒟𝐺𝑁 = {𝒟𝑢𝑠, 𝒟𝑜𝑠}.  
SMOGN instead employs two different oversampling techniques: GN and 

SMOTER. Prior to the sample generation, the k-nearest neighbors of a seed sample are 

determined. If a randomly selected k-nearest neighbor is within a specified maximum 

distance, SMOTER is performed resulting in a set of new samples 𝒟𝑜𝑠
𝑆𝑀𝑂𝑇𝐸𝑅. With 

SMOTER, values of numeric attributes are interpolated and nominal ones are randomly 

selected. The target value is determined by a weighted average with weights that are 

inversely proportional to the distance between the seed samples and the new generated 

one. In case the maximum distance is exceeded, GN is performed, leading to a second 

oversampling dataset 𝒟𝑜𝑠
𝐺𝑁. The final augmented dataset for SMOGN therefore consists 

of three sets: 𝒟𝑆𝑀𝑂𝐺𝑁 = {𝒟𝑢𝑠, 𝒟𝑜𝑠
𝑆𝑀𝑂𝑇𝐸𝑅 , 𝒟𝑜𝑠

𝐺𝑁} [5, 6, 23].  
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Appendix 5: EVARS-GPR parameters 

Table 4. Overview of EVARS-GPR’s parameters with all analyzed methods CPD and DA.  

category parameter explanation 

general parameters 

scale_window(_factor) 

size of window prior to detected change point 

for calculation of output scaling factor, alterna-

tively formulated as a factor of the season length 

scale_window_minimum minimum window size for output scaling factor 

scale_seasons 
number of seasons considered for output scaling 

factor 

scale_thr 

minimum threshold for the deviation between 

the current and last output scaling factor to trig-

ger augmented refitting 

CPD parameters BOCPD 

const_hazard(_factor) 
constant of the hazard function, alternatively 

formulated as a factor of the season length 

ChangeFinder 

cf_r forgetting factor of the SDAR models 

cf_order order of the SDAR models 

cf_smooth window size for the smoothing step 

cf_thr_perc 
percentile threshold of the anomaly score during 

the offline phase to declare a change point  

DA parameters 
max_samples(_factor) 

maximum number of samples for DA, alterna-

tively formulated as number of seasons 

GN 

gn_operc oversampling percentage 

gn_uperc undersampling percentage 

gn_thr threshold to determine normal and rare values 

append 
specify if scaled dataset version is appended 

prior to sample generation  

SMOGN 

smogn_relthr threshold to determine normal and rare values 

smogn_relcoef box plot coefficient for relevance function  

smogn_under_samp specify if undersampling is performed 

append 
specify if scaled dataset version is appended 

prior to sample generation 

 

Based on the results over all 67 simulated scenarios, we selected CF for online CPD 

and a scaling of the original dataset for DA. Furthermore, our experiments yielded the 

following parameters: scale_window_factor = 0.1, scale_window_minimum = 2, 

scale_seasons = 2, scale_thr = 0.1, cf_r = 0.4, cf_order = 1, cf_smooth = 4, cf_thr_perc 

= 70. For efficiency, we set max_samples_factor = 10.  
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Appendix 6: Real-World Datasets 

Table 5. Overview of the used real-world datasets. 

dataset explanation samples 

datasets with a changing output scale during the online phase 

CashierData weekly sales of a horticultural retailer 195 

DrugSales sales of antidiabetic drugs per month 204 

VisitorNights visitor nights per quarter in millions in Australia 68 

AirPassengers total number of US airline passengers per month 144 

MaunaLoa 
monthly averaged parts per million of CO2 measured at 

Mauna Loa observatory, Hawaii 
751 

datasets without a changing output scale during the online phase 

ChampagneSales sales of perrin freres champagne 105 

TouristsIndia foreign tourist arrivals per quarter in India 48 

Milk average milk production per cow and month 168 

Beer Australian monthly beer production 56 

USDeaths accidental deaths in the US per month 72 

Table 6. Overview of additional calendric and statistical features. Not all features are applicable 

for all datasets, e.g. due to the temporal resolution. Features are added to existing ones. 

category features explanation 

calendric 

features 

date based features hour, day of month, weekday, month, quarter 

working day flag showing if the day is a working day 

statistical 

features 

lagged variables prior values of the target variable / features 

seasonal lagged variables prior values of the preceding season 

rolling statistics  rolling mean and maximum within a window 

seasonal rolling statistics seasonal rolling mean and maximum within a window 

rolling weekday statistics rolling mean and maximum within a window calculated 

for each weekday 
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Appendix 7: Further Simulated Scenarios 

The following figures show further simulated scenarios. Each box shows the result of 

the scenario parametrized with the value given on the x- and y- axis. Numbers are 

RMSE-ratios, lower values reflect a higher improvement compared to 𝑀𝑏𝑎𝑠𝑒. 

 
Fig. 4. Behavior on a variety of simulated data (𝒏𝒔𝒆𝒂𝒔 = 𝟐𝟓). (a) time of occurrence and du-

ration via start and end indices  𝑠𝑡𝑎𝑟𝑡  respectively  𝑒𝑛𝑑, (b) same factors with a higher slope 𝜅 

and maximum manipulation factor 𝛿max, (c) extent and speed of the change via 𝜅 and 𝛿𝑚𝑎𝑥, (d) 

same factors on a finer grid for 𝛿𝑚𝑎𝑥. 

 
Fig. 5. Behavior on a variety of simulated data (𝒏𝒔𝒆𝒂𝒔 = 𝟕𝟓). (a) time of occurrence and du-

ration via start and end indices  𝑠𝑡𝑎𝑟𝑡  respectively  𝑒𝑛𝑑, (b) same factors with a higher slope 𝜅 

and maximum manipulation factor 𝛿max, (c) extent and speed of the change via 𝜅 and 𝛿𝑚𝑎𝑥, (d) 

same factors on a finer grid for 𝛿𝑚𝑎𝑥. 

(a) Start vs. end index:  𝑠𝑡𝑎𝑟𝑡 vs.  𝑒𝑛𝑑 (𝛿𝑚𝑎𝑥 =  , 𝜅 = 0  ) (b) Start vs. end index:  𝑠𝑡𝑎𝑟𝑡 vs.  𝑒𝑛𝑑 (𝛿𝑚𝑎𝑥 =  , 𝜅 = 0  )

(c) Slope vs. maximum factor: 𝜅 vs. 𝛿𝑚𝑎𝑥 (length: 𝑛𝑠𝑒𝑎𝑠) (d) Slope vs. maximum factor: 𝜅 vs. 𝛿𝑚𝑎𝑥 (length: 𝑛𝑠𝑒𝑎𝑠)

(a) Start vs. end index:  𝑠𝑡𝑎𝑟𝑡 vs.  𝑒𝑛𝑑 (𝛿𝑚𝑎𝑥 =  , 𝜅 = 0  ) (b) Start vs. end index:  𝑠𝑡𝑎𝑟𝑡 vs.  𝑒𝑛𝑑 (𝛿𝑚𝑎𝑥 =  , 𝜅 = 0  )

(c) Slope vs. maximum factor: 𝜅 vs. 𝛿𝑚𝑎𝑥 (length: 𝑛𝑠𝑒𝑎𝑠) (d) Slope vs. maximum factor: 𝜅 vs. 𝛿𝑚𝑎𝑥 (length: 𝑛𝑠𝑒𝑎𝑠)
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Fig. 6. Behavior on a variety of simulated data (𝒏𝒔𝒆𝒂𝒔 = 𝟏𝟎𝟎). (a) time of occurrence and 

duration via start and end indices  𝑠𝑡𝑎𝑟𝑡  respectively  𝑒𝑛𝑑, (b) same factors with a higher slope 

𝜅 and maximum manipulation factor 𝛿max, (c) extent and speed of the change via 𝜅 and 𝛿𝑚𝑎𝑥, 

(d) same factors on a finer grid for 𝛿𝑚𝑎𝑥. 

  

(a) Start vs. end index:  𝑠𝑡𝑎𝑟𝑡 vs.  𝑒𝑛𝑑 (𝛿𝑚𝑎𝑥 =  , 𝜅 = 0  ) (b) Start vs. end index:  𝑠𝑡𝑎𝑟𝑡 vs.  𝑒𝑛𝑑 (𝛿𝑚𝑎𝑥 =  , 𝜅 = 0  )

(c) Slope vs. maximum factor: 𝜅 vs. 𝛿𝑚𝑎𝑥 (length: 𝑛𝑠𝑒𝑎𝑠) (d) Slope vs. maximum factor: 𝜅 vs. 𝛿𝑚𝑎𝑥 (length: 𝑛𝑠𝑒𝑎𝑠)
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